B. Tech. ECE, 3rd Semester (Bate	ch 2018)	Session Jul-Nov/Dec 2019	
ELECTRONIC DEVICES & CIRCUITS			
Subject Code: BECE-301	L T P C	Duration: 60 Hrs	
	3104		

Course Objectives:

This course is meant to provide fundamental knowledge to students for understanding of the various electronic devices, their circuits & behavior under various conditions.

- 1. To make aware the students about the various electronic devices and their circuits.
- 2. To impart knowledge of BJTs and FETs.
- 3. To provide the students detailed concepts of MOSFETs and CMOSFETs.
- 4. To analyze low and high frequency transistor models.

Course Outcomes:

At the end of this course student will be able to:

- 1. Understand the principles of semiconductor physics
- 2. Understand the concepts of junction diodes and their applications.
- 3. Understandandutilizethemathematicalmodelsofsemiconductorjunctionsand MOS transistors for circuits and systems
- 4. Analyze BJT characteristics and determine their behavior under low and high frequencies.
- 5. Analyze various concepts of FETs and their characteristics.
- 6. Design low and high frequency models and observe and their various characteristics.

UNIT-I (15 Hrs)

Semiconductors: Introduction to Semiconductors and their classification, Energy bands in intrinsic and extrinsic semiconductors, Carrier transport: diffusion current, drift current, mobility and resistivity; sheet resistance, Generation and recombination of carriers.

Semiconductors Diodes: P-N junction diode, diode resistance and capacitance, I-V characteristics, small signal switching models, Avalanche/Zener breakdown, Applications of PN diode: rectifier, clipper and clamper, Zener diode, Schottky diode, LED, photodiode and solar cell

UNIT-II (15 Hrs)

Bipolar Junction Transistor: BJT and its operation, Ebers-Moll Model, Various BJT configurations and their I-V characteristics, Biasing techniques and bias stability, BJT as a switch and as an amplifier.

Field Effect Transistor: JFET and its operation, various configurations and I-V characteristics, Biasing techniques, FET as a switch and as an amplifier, MOS capacitor, C-V characteristics, MOSFETs; their operation and characteristics, biasing and small signal models of MOS transistor, CMOS devices and CMOS inverter.

UNIT-III (15 Hrs)

Low & High Frequency Transistor Models: Small signal low frequency BJT hybrid Model, Analysis of transistor amplifier in CB, CE and CC configuration using h-parameters, small signal low frequency analysis of FET/MOSFET, Need of high frequency BJT model, high frequency T model, hybrid-pi model, hybrid-pi conductances in terms of low frequency h

UNIT-IV (15 Hrs)

Integrated Circuit Fabrication Process: Fundamentals of IC fabrication, photolithography, etching, oxidation, diffusion, ion implantation, chemical vapor deposition, sputtering, twin-tub CMOS process. Monolithic IC-Fabrication: Resistor, PN junction Diode and BJTs.

Text/Reference Books:

- 1. G.Streetman, and S.K.Banerjee, "SolidStateElectronicDevices,"7thedition, Pearson, 2014.
- 2. D.Neamen, D.Biswas" Semiconductor Physics and Devices, "McGraw-HillEducation
- 3. S. M. Sze and K. N. Kwok, "Physics of Semiconductor Devices," 3rd edition, John Wiley & Sons, 2006.
- 4. C.T.Sah, "Fundamentalsofsolidstateelectronics," WorldScientificPublishingCo.Inc, 1991.
- 5. Y.TsividisandM.Colin, "OperationandModelingoftheMOSTransistor," Oxford Univ. Press, 2011.
- 6. J. Luo, "Integrated Modelling of Chemical Mechanical Planarization for sub-micron IC Fabrication", Springer.

Tentative Teaching Plan

B. Tech. ECE, 3rd Semester (Batch 2018) Session Jul-Nov/Dec 2019 ELECTRONIC DEVICES & CIRCUITS

Subject Code: BECE-301

L T P C

Duration: 60 Hrs

3-1-0-4

Subject In-charge: Dr. Neeraj Gill

Lecture Plan	Topics to be Covered	
L-1	Brief Introduction to the subject	
	Semiconductors: Introduction to Semiconductors and their classification	
L-2	Energy bands in intrinsic and extrinsic semiconductors, Carrier transport:	
	diffusion current, drift current	
L-3	Mobility and resistivity; sheet resistance, Generation and recombination of	
	carriers	
L-4	Semiconductors Diodes:	
	P-N junction diode, diode resistance and capacitance	
L-5	I-V characteristics, small signal switching models	
L-6	Avalanche/Zener breakdown	
L-7	Applications of PN diode: rectifier	
L-8,9,10	clipper and clamper	
L-11	Zener diode Schottky diode, LED	
L-12	photodiode and solar cell	
L-13,14	Bipolar Junction Transistor: BJT and its operation	
L-15	Ebers-Moll Model	
L-16,17	Various BJT configurations and their I-V characteristics	
L-18,19	Biasing techniques and bias stability	
L-20	BJT as a switch and as an amplifier	
L-21	Field Effect Transistor: JFET and its operation	
L-22	Various configurations and I-V characteristics	
L-23	Biasing techniques	
L-24	FET as a switch and as an amplifier	
L-25	MOS capacitor, C-V characteristics	
L-26	MOSFETs; their operation and characteristics	
L-27	Biasing and small signal models of MOS transistor, CMOS devices and	
	CMOS inverter	
L-28	Low & High Frequency Transistor Models: Small signal low frequency	
1 00 00 01 00	BJT hybrid Model	
L-29,30,31,32	Analysis of transistor amplifier in CB, CE and CC configuration using h-	
1 22 24 25		
L-33,34,35	Small signal low frequency analysis of FET/MOSFET	
L-36	Need of high frequency BJT model, high frequency T model	
L-3/	Hybrid-pi model	
L-38	Hybrid-pi conductances in terms of low frequency h parameters	
L-39,40	Integrated Circuit Fabrication Process: Fundamentals of IC fabrication	
L-41	Photolithography, etching, oxidation	
L-42	diffusion, ion implantation, chemical vapor deposition, sputtering	
L-43	twin-tub CMOS process	
L-44,45	Monolithic IC fabrication: Resistor, PN junctionDiode and BJTs	
Rest of the 15 contact hours are assigned to Tutorials and two MSTs		