

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB), INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) & 12 (B) of UGC; Member AIU)

Department: **ELECTRICAL ENGINEERING**

Giani Zail Singh Campus College of Engineering & Technology, MRSPTU

COs, POs, PSOs Mapping

Subject: <u>Basics of Electrical Engg.</u>	Subject Code: BELEE0-101	Semester: 1st
Credit: 4	LTP <u>310</u>	Duration: <u>42 Hrs.</u>

CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	To understand and analyze	2	3										1			3
•	basic DC and AC circuits															
CO2	To study the use and working principle of single phase transformers	2					3						1	3		
CO3 .	To study the application and working principles of three phase and single phase induction motors.	2					3						1	3		
CO4	To introduce to the components of low voltage electrical installations	2					3						1	3		

Subject: <u>BASIC ELECTRICAL</u> <u>ENGINEERING LAB</u>	Subject Code: <u>BELEE0-102</u>	Semester: 1st
Credit: 1	LTP <u>0 0 2</u>	Duration: <u>42 Hrs.</u>

CO	Statement	PO	P01	P01	P01	PSO	PS0	PSO								
S		1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1.	Get an exposure to common electrical component s and their ratings	2					3			2			1		3	
CO 2.	Make	2					3			2			1	2	3	

	electrical connection s by wires of appropriate										
	ratings										
CO 3.	Understand the usage of common electrical measuring instrument s	2			3		2		1	3	
CO 4.	Understand the basic characterist ics of transforme rs and electrical induction motors	2			3		2		1	2	3

Subject: <u>ELECTRICAL CIRCUIT</u> <u>ANALYSIS</u>	Subject Code: <u>BELES1-301</u>	Semester: 3 rd
Credit: 4	LTP <u>310</u>	Duration: <u>60 Hrs.</u>

COs	Statement	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	Apply network theorems for the analysis of electrical circuits	1	3		2								1		3	1
CO2.	Obtain the transient and steady-state response of electrical circuits.	1	3		2								1		3	1
CO3.	Analyze circuits in the sinusoidal steady-state (single-phase and three-phase).	1	3		2								1		3	1
CO4.	Analyze two-port circuit behavior	1	3		2								1		3	1

Subject: ANALOG ELECTRONIC CIRCUITS	Subject Code: <u>BELES1-302</u>	Semester: 3 rd
Credit: <u>4</u>	LTP <u>310</u>	Duration: 45 Hrs.

Cos	Statement	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
CO1.	Understand the characteristics of transistors	2					1						1		3	
CO2.	Design and analyze various rectifier and amplifier circuits.	1	3	3			1						1	3	2	
CO3.	Design sinusoidal and non-sinusoidal oscillators.	1		3			1						1	3	2	
CO4.	Understand the functioning of OP-AMP and design OP- AMP based circuits	2		3			1						1	3	2	

Subject: <u>ELECTRICAL MACHINES - I</u>	Subject Code: BELES1- 304	Semester: 3 rd
Credit: 4	LTP310	Duration: <u>60 Hrs.</u>

CO	Statement	PO	P01	P01	P01	PSO	PSO	PS0								
S		1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1.	Understand the concepts of magnetic	3					1						1			1
	circuits.															
CO 2.	Understand the operation of D.C. machines	3					1						1	3		
CO 3.	Analyze the differences in operation of different D.C. machine configurations.	1	3				1						1	3		

CO 4.	Analyze single phase and three phase transformer s circuits.	1	3		1			1	3	
	s circuits.									

Subject: <u>ELECTRICAL MACHINES</u> <u>LAB - I</u>	Subject Code: <u>BELES1-305</u>	Semester: 3 rd
Credit: 1	LTP <u>0 0 2</u>	Duration: <u>42 Hrs.</u>

COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	To acquire skills to operate all types of D.C. machines.	3					3			1			1	3		1
CO2.	Ability to analyze the speed control methods and efficiency of DC machines		3			1	2			1			1	2	3	1
CO3.	To be able to compute efficiency and voltage regulation of transformers.		2				3			1			1	2	3	1

Subject: <u>ELECTROMAGNETIC</u> <u>FIELDS</u>	Subject Code: <u>BELES1-306</u>	Semester: 3 rd
Credit: 4	LTP <u>310</u>	Duration: <u>60 Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
CO1.	To understand the basic laws of electromagneti sm.	3											1		1	1
CO2.	To obtain the electric and magnetic fields for simple configurations under static conditions	2	3										1		3	1
CO3.	To analyze time varying electric and magnetic fields.	2	3										1		3	1
CO4.	To understand	3	2		1								1		3	1

	Maxwell's equation in different forms and different media									
CO5.	To understand the propagation	3	2	1				1	3	1
	of EM waves.									

Subject: ENGINEERING MECHANICS	Subject Code: BMECE0-001	Semester: 3 rd
Credit: 4	LTP310	Duration: <u>60 Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	Kinematics of particles	2	3				1						1		3	1
CO2.	Co-planar and concurrent forces	2	3				1						1		3	1
CO3.	Solids mechanics	2	3				1						1		3	1
CO4.	Moment of inertia and center of gravity	2	3		1		1						1		3	1
CO5.	Role of friction in screw Jack and inclined planes	2	3	1	2		1						1		3	1

Subject: ENVIRONMENTAL SCIENCES	Subject Code: BMNCCO- 002	Semester: 3 rd
Credit: <u>0</u>	LTP2 <u>00</u>	Duration: <u>Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	PO7	P08	P09	P010	P011	P012	PSO ₁	PSO ₂	PSO3
CO1.	To identify global environmental problems arising due to various engineering/industrial and technological activities and the science behind these problems.	1	2		3		2	3					1		3	1
CO2.	To realize the importance of ecosystem and biodiversity for maintaining ecological balance	1 1	2				2	3					1	3		1
CO3.	To identify the major pollutants and abatement devices for environmental	1			3		2	3					1	3		1

	management and sustainable development											
CO4.	To estimate the current world population scenario and thus calculating the economic growth, energy requirement and demand.	1	2		3	2	3			1	3	1
CO5.	To understand the conceptual process related with the various climatologically associated problems and their plausible solutions.	1	2	3	3	2	3			1	3	1

Subject: DIGITAL ELECTRONICS	Subject Code: <u>BELES1-401</u>	Semester: 4th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
CO1.	Understand working of logic families and logic gates.	3					1						1		3	1
CO2.	Design and implement Combinational and Sequential logic circuits.	2		3			1						1	3	2	1
CO3.	Understand the process of Analog to Digital conversion and Digital to Analog conversion	3					1						1		3	1
CO4.	Be able to use PLDs to implement the given logical problem	3		3			1						1	3		1

Subject: <u>DIGITAL ELECTRONICS</u> <u>LAB</u>	Subject Code: <u>BELES1-402</u>	Semester: 4 th
Credit: 1	LTP <u>002</u>	Duration: <u>Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	To give students a practical knowledge about various types of gates and verify their truth tables.						1			1			1	3		1
CO2.	To give students a working knowledge to connect digital circuits and verify their truth tables.	3					1			1			1	3		1
CO3.	To give students knowledge of working of different combinational and sequential circuits.	3					1			1			1	3		1

Subject: <u>ELECTRICAL MACHINES</u> <u>-II</u>	Subject Code: <u>BELES1-403</u>	Semester: 4 th
Credit: 4	LTP <u>310</u>	Duration: <u>60 Hrs.</u>

COs	Statement	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1.	Understand the concepts of rotating magnetic fields	3	2										1		3	1
CO2.	Understand the operation of AC machines.	3	2				3						1	3		1
CO3.	Analyze performance characteristics of AC machines	2	3				1						1		3	1
												·				

Subject: ELECTRICAL MACHINE-II LAB	Subject Code: <u>BELE1-413</u>	Semester: 4 th
Credit: 1	LTP <u>310</u>	Duration: <u>Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1.	Obtain equivalent circuit parameters of single-phase and three-phase Induction motors		2	3						1			1		3	1
CO2.	Control speed of Induction motors by different methods		2	3		1	3			1			1	3		1
CO3.	Draw open and short circuit characteristics of three-phase alternator and V and inverted V curves of synchronous motor	1	2				3			1			1		3	1
CO4.	Find out voltage regulation of an alternator by different tests.	1	3				3			1			1		3	1
CO5.	Synchronize two or more 3-phase alternators.	1	2	2	2	1	3			1			1	3		1

Subject: <u>POWER ELECTRONICS</u>	Subject Code: <u>BELES1-405</u>	Semester: 4 th
Credit: 3	LTP <u>300</u>	Duration: 45 <u>Hrs.</u>

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	Understand the differences between signal level and power level devices	3	2				1						1	3		1
CO2.	Analyze controlled rectifier circuits.	2	3				3						1		3	1
CO3.	Analyze the operation of DC-DC choppers		3				3						1		3	1
CO4.	Analyze the operation of voltage source inverters.	2	3				3						1		3	1

Subject: POWER ELECTRONICS LAB	Subject Code: <u>BELES1-406</u>	Semester: 4 th
Credit: 1	LTP0 <u>02</u>	Duration: <u>Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
	Students will be able to															
	verify the															
CO1.	characteristics of SCR	2	2							1			1		3	1
	and UJT and triggering															
	pulses for them.															
	They will be able to															
	visualize and analyze															
CO2.	and periormanee or	2	3				3			1			1		3	1
	various converter															
	circuits.															
	They will be able to															
CO3.		2	2		2	3	3			1			1	3		1
	motors using thyristors															

Subject: <u>Signals and Systems</u>	Subject Code: <u>BECES1-303</u>	Semester: <u>3rd</u>
Credit: 4	LTP <u>310</u>	Duration: 60 Hrs.

COs	Statement	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	Understand the concepts of continuous time and discrete time systems		2										1		3	1
CO2.	Analyze systems in complex frequency domain.	2	3										1		3	1
CO3.	Understand sampling theorem and its implications.	2	2	3	2	2							1	3	2	1

Subject: <u>POWER SYSTEMS - I</u>	Subject Code: <u>BELES1-501</u>	Semester: 5 th
Credit: 4	LTP310	Duration: <u>60 Hrs.</u>

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	To choose working voltage and economic size of conductors for transmission and distribution systems	3	2		1		1	1					1	3		1
CO2.	To analyze performance of transmission lines and underground cables	1	3										1		3	1
СОЗ.	To select and design overhead line insulators and transmission lines.	1	2	3			1						1	3		1

Subject: CONTROL SYSTEMS	Subject Code: <u>BELES1-502</u>	Semester: 5th
Credit: 4	LTP <u>310</u>	Duration: <u>60 Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1.	To do modeling of linear-time-invariant systems using transfer function and state-space representations	1	2	3	2	2							1		3	1
CO2.	To do the stability assessment for linear-time invariant systems	1	3	2	2	2							1		3	1
CO3.	To design simple feedback controllers.	1	2	3	2	2	2						1	3		1

Subject: Signals and Systems MICROCONTROLLERS AND PLC	Subject Code: <u>BELES1-</u> <u>503</u>	Semester: 5 th
Credit: 3	LTP <u>300</u>	Duration: 45 <u>Hrs.</u>

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	Know about the architecture, operation and instruction set of 8051 microcontroller	3											1	3		1
CO2.	Be able to do programming of 8051 microcontrollers	2		3									1		3	1
CO3.	Be able to Interface 8051 with peripheral devices.	2		3			3						1	3		1
	Be able to use PLCs.	1		3			3						1	3		1

Subject: <u>POWER SYSTEMS - I</u> <u>LABORATORY</u>	Subject Code: BECES1-303	Semester: 3 rd
Credit: <u>1</u>	LTP0 <u>02</u>	Duration: <u>Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1.	Students will have more detailed insight about the need of various equipment used for transmission and distribution of power	3					3			1			1	3		1
CO2.	They will be able to draw performance characteristics of these equipment	2	3							1			1		3	1
CO3.	To practically compute parameters and performance of transmission lines and feeders	2	3							1			1		3	1

Subject: <u>CONTROL SYSTEMS</u> <u>LABORATORY</u>	Subject Code: <u>BELES1-505</u>	Semester: 5 th
Credit: 1	LTP0 <u>02</u>	Duration: <u>60 Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	To understand the basics of	3								1			1		1	1
	MATLAB software.															
CO2.	To understand variety of control system strategies.		1				2			1			1		3	1
CO3.	To acquire skills to understand all types of control components.	3					2			1			1		3	1
CO4.	Ability to analyze the stability of control systems		3							1			1		3	1

Subject: MICROCONTROLLER AND PLC Lab	Subject Code: <u>BELES1-</u> <u>506</u>	Semester: 5 th
Credit: 4	LTP0 <u>02</u>	Duration: <u>Hrs.</u>

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
	Become familiar with the															
CO1.	microcontrollers and	3					3						1	3		1
	PLCs.															
	Be able to write assembly															
CO2.	language programs for	2		3						1			1	3	2	1
002.	various types of	_								-			•		_	•
	applications															
CO3.	Become familiar with the	2		3			3			1			1	3		1
CO3.	use of PLCs in industry			3			3			1			1	3		1

Subject: <u>ELECTRICAL DRIVES</u>	Subject Code: <u>BELED1-511</u>	Semester: 5 th
Credit: 3	LTP300	Duration: 45 Hrs.

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO 1.	To draw the characteristics of DC motors and induction motors.	2	3	1									1		3	1
CO 2.	To control the speed of DC motors using power electronic converters.	2		3		1	3						1	3		1
CO 3.	To use power electronic converters for induction motor speed control	2				1	3						1	3		1

Subject: <u>ELECTRICAL MACHINE</u> <u>DESIGN</u>	Subject Code: <u>BELED1-512</u>	Semester: 5 th
Credit: 3	LTP <u>300</u>	Duration: 45 <u>Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
	Know the															
CO1.	constructional	3					2						1	3		1
	features.															
	Be able to evaluate															
CO2.	performance	2	3				1						1		3	1
CO2.	characteristics of	_	3				1						1		3	1
	electrical machines															
	Be able to carry out															
CO3.	a basic design of an	2		3		2	2						1	3		1
	ac machine															
	Be able to use															
CO4.	software tools to do	2		3		2							1	3		1
	design calculations															

Subject: <u>ELECTROMAGNETIC</u> <u>WAVES</u>	Subject Code: <u>BELED1-</u> <u>513</u>	Semester: 5 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

Provide solution to real life plane CO1. wave problems for 2 2 3 1	1	3	
various boundary conditions.		3	1
CO2. Visualize TE and TM mode patterns of field distributions in a rectangular waveguide	1	3	1
CO3. Understand radiation by antennas.	1	3	1

Subject: <u>ECONOMICS FOR</u> <u>ENGINEERS</u>	Subject Code: BECES1-303 BHSMC0-019	Semester: 5 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO 1.	Able to analyze the demand and supply conditions of the market and accordingly assess the position of a company	2	3	3			3					1	1	3	3	3
CO 2.	Understand the basic economic problems faced by the society and make effective decisions	2	2	3	3		3					1	1	3	3	3
CO 3.	Design competition strategies, which includes costing, pricing, product differentiation, and market environment according to the natures of products and the structures of the markets	2	2	3			3					1	1	3	3	3
CO 4.	Analyze the market competitions and design strategies accordingly	2	3	3			3					1	1	3	3	3

Subject: POWER SYSTEMS-II	Subject Code: <u>BELES1-601</u>	Semester: 6 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
CO 1.	Explain causes and effects of faults, components used for power system protection such as; isolators and fuses, relays, circuit	1 1	3		3		3						1	3	3	1
CO 2.	Classify types of relays and circuit breakers and explain their working principles and operation.	3	2				3						1	3		1
CO 3.	Protect transmission lines, feeders, bus bars, generator and	3		2			3						1	3		1

	transformer									
CO 4.	Develop concepts about the basic principles of static and digital protection.	2		3				1	3	1

Subject: <u>ELECTRICAL</u> <u>MEASUREMENTS &</u> <u>INSTRUMENTATION</u>	Subject Code: <u>BELES1-</u> 602	Semester: 6 th
Credit: <u>3</u>	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO 1.	To explain the constructional features, characteristics and operation of various measurement devices and transducers	3	2				1						1	3	2	1
CO 2.	To measure R, L and C using DC and AC bridges	1	2	3			1						1		3	1
CO 3.	To use CRO and instrument transformers for measurement and instrumentation purposes	1	2	3			1						1	3		1
CO 4.	To select transducers for different applications.	1	2	3			1						1	3		1

Subject: <u>POWER SYSTEMS-II Lab</u>	Subject Code: <u>BELES1-603</u>	Semester: 6 th
Credit: 1	LTP <u>002</u>	Duration: <u>Hrs.</u>

COs	Statement	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2	PSO3
	To demonstrate															
CO1.	operation of relays	3								1			1	3		1
	and circuit breakers															
	To analyze various															
CO2.	protection schemes	2	3				1			1			1	3	3	1
	in power system.															
	To plot															
	characteristics of															
CO3.	various types of	2	3				1			1			1		3	1
	relays, circuit															
	breakers and fuses															

Subject: <u>ELECTRICAL</u> <u>MEASUREMENTS &</u> <u>INSTRUMENTATION Lab</u>	Subject Code: <u>BELES1-</u> 604	Semester: 6 th
Credit: 1	LTP <u>002</u>	Duration: <u>Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	To apply the basic measurement techniques and use measuring instruments.	2	1	3			1						1	3	2	1
CO2.	To measure various electrical quantities using various types of meters.	2		3			1						1	3		1
CO3.	To practically use current and potential transformers, CRO and DSO	2		3			1						1	3		1

Subject: <u>ELECTRICAL DESIGN & ESTIMATION LAB</u>	Subject Code: BELES1-605	Semester: 3 rd
Credit: 1	LTP <u>002</u>	Duration: <u>Hrs.</u>

COs	Statement	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	To estimate the cost of various types of electrical installations.	2	3				1			1			1	3	2	1
CO2.	To identify design goals and analyze possible approaches to meet given specifications with realistic engineering constraints.	2	3	3	3		2			3			1	3	3	1
CO3.	To use modern engineering software tools.	2				3							1		3	1
CO4.	To work amicably as a member of an engineering design team	2		3						3			1	3		1

Subject: INDUSTRIAL ELECTRICAL SYSTEMS	Subject Code: BELED1-611	Semester: 6 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO 1.	To represent the electrical wiring systems for residential, commercial and industrial consumers with standard symbols and drawings, SLD	3					1						1	3		1
CO 2.	To explain various components of industrial electrical systems.	3					1						1	3		1
CO 3.	To analyze and select the proper size of various electrical system components	2	2	3			2						1	3	3	1

Subject: NON-LINEAR & DIGITAL CONTROL SYSTEMS	Subject Code: <u>BELED1-612</u>	Semester: 6 th
Credit: 3	LTP300	Duration: 45 Hrs.

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1.	Represent discrete LTI systems	3											1		3	1
CO2.	Analyze stability of open loop and closed loop discrete-time systems		3										1		3	1
CO3.	Design and analyze digital controllers		2	3			2						1	3	3	1
CO4.	Design state feedback and output feedback controllers			3			2						1	3		1

Subject: <u>COMPUTER</u> <u>ARCHITECTURE</u>	Subject Code: <u>BELED1-613</u>	Semester: 6 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO 1.	Organize a modern computer system and be able to relate it to real examples			3			1						1	3	2	1
CO 2.	Write efficient programs in assembly language of the 8086 family of microprocessors			3									1	2	3	1
CO 3.	Develop the programs in assembly language for 80286, 80386 and MIPS processors in real and protected modes.	2		3		1							1	2	3	1

Subject: COMPUTATIONAL ELECTROMAGNETICS	Subject Code: <u>BELED1-614</u>	Semester: 6 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1.	Explain the basic concepts of electromagnetics	3											1		3	1
CO2.	Use computational techniques for electromagnetic fields	2	3										1		3	1
CO3.	Apply the techniques to simple real-life problems	2		3			1						1	3		1

Subject: WIND & SOLAR ENERGY SYSTEMS	Subject Code: <u>BELED1-621</u>	Semester: 6 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1.	To explain the basics of wind power generation	3					1						1		3	1
CO2.	To elaborate the basics of solar power generation	3					1						1		3	1
CO3.	To interpret the network integration issues and the power electronic interfaces for wind and solar generation	2	3	2	3		1						1	3		1

Subject: <u>HVDC TRANSMISSION</u> <u>SYSTEMS</u>	Subject Code: BELED1-622	Semester: 6 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO 1.	$ \begin{array}{cccc} To & know & the \\ advantages & of & DC \\ transmission & over & AC \\ transmission & & & \end{array} $	3											1		3	1
CO 2.	To explain the operation of Line Commutated Converters and Voltage Source converters	3	1										1		3	1
CO 3.	To apply control strategies used for HVDC transmission system	2		3			1						1	3		1
CO 4.	To improve power system stability using HVDC system	2		3	2		1						1	2	3	1

Subject: EHVAC TRANSMISSION SYSTEMS	Subject Code: BELED1-623	Semester: 6 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PS01	PSO2	PSO3
CO1.	To explain the advantages of EHVAC Transmission and problems associated with it.	3	1				1						1		3	1
CO2.	To examine the reactive parameters of lines and use methods of voltage control	,	2	3			2						1	1	3	2
CO3.	To compute the voltage gradients of conductors and explain the associated bad effects of corona.	2	3		2		1	1					1		3	1

Subject: <u>FACTS DEVICES IN</u> <u>TRANSMISSION &</u> <u>DISTRIBUTION NETWORKS</u>	Subject Code: <u>BELED1-624</u>	Semester: 6 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
	To analyze the															
CO1.		2	3										1		3	1
	transmission															
	To explain the effect of															
CO2.	shunt and series reactive	2	3										1		3	1
	power compensation															
	To apply FACTS devices															
CO3.	to control power flow and	2		3	2		2						1	3		1
	to improve power quality															

Subject: Signals and Systems INTRODUCTION TO INDUSTRIAL MANAGEMENT	Subject Code: <u>BELES1-606</u>	Semester: 6 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
	Understand the theories															
CO1.	and principles of modern	3					2					1	1	3	3	1
	management															
	Apply the concepts to															
CO2.	the management of	2		3			3					3	1	3		1
CO2.	organizations in private			3			3					3	1	3		1
	and public sector															
	Plot and analyze															
CO3.	inventory control models	2	3				1						1	3	3	1
	and techniques.															
CO4.	Understand JIT, MRP	3					1						1		3	1
CO4.	and Six Sigma	3					1						1		3	1

Subject: <u>POWER SYSTEM</u> <u>ANALYSIS</u>	Subject Code: <u>BELES1-701</u>	Semester: 7 th
Credit: 3	LTP <u>300</u>	Duration: <u>45 Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2	PSO3
CO1.	Develop per unit system models of synchronous machines, transformers, transmission lines and static loads for power system studies	2		3									1		3	1
CO2.	Perform load flow studies by using bus admittance matrix	2	3		1								1		3	1

	and to do fault analysis by bus impedance matrix										
CO3.	Compare features of Gauss-Siedel, Newton-Raphson and Decoupled methods of load flow analysis.	2	3					1		3	1
CO4.	Analyze the effect of symmetrical and unsymmetrical faults on power system	2	3	3	1			1	2	3	1
CO5.	Analyze the effect of small and large disturbances on power system stability	2	3	3	1			1	2	3	1

Subject: <u>INTRODUCTION TO</u> <u>INDUSTRY 4.0</u>	Subject Code: BELES1-702	Semester: 7 th
Credit: 2	LTP <u>200</u>	Duration: <u>45 Hrs.</u>

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2	PSO3
CO1.	Understanding about the emerging demands of the industry	3	2				3						1	3		1
CO2.	To develop an insight about the better human-machine interface	2	2			2	3						1		3	1

Subject: <u>POWER SYSTEM</u> <u>ANALYSIS LAB</u>	Subject Code: <u>BELES1-703</u>	Semester: 7 th
Credit: <u>3</u>	LTP0 <u>02</u>	Duration: <u>Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2	PSO3
CO1.	Ability to develop software programs for bus matrices	1		3		2							1		3	1
CO2.	Capability to develop or use software programs for load flow analysis	1	2	3	2	2	1						1		3	1
CO3.	Ability to compute fault currents	1	3		2		1						1		3	1

Subject: MINOR PROJECT	Subject Code: <u>BELES1-704</u>	Semester: 7 th	
Credit: <u>2</u>	LTP <u>004</u>	Duration: 45 Hrs.	

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	Student will be able to apply the theoretical and practical knowledge gained so far, by taking up the study in the form of a project work			3	2	1	1			3		3	1	3		1
CO2.	This study is expected to provide a good initiation for the students in R&D work			3	2	1	1			3		3	1		3	1

Subject: <u>HIGH VOLTAGE</u> <u>ENGINEERING</u>	Subject Code: BELED1-711	Semester: 7 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	Knowledge of generation and measurement of DC, AC, & Impulse voltages	3											1	3		1
CO2.	Knowledge of tests on HV equipment and on insulating materials as per the standards	3					3						1	3		1
CO3.	Knowledge of how over-voltages arise in a power system and protection against these over-voltages.	3	3	3			3						1	3	2	1
																1

Subject: ELECTRICAL & HYBRID VEHICLES	Subject Code: <u>BELED1-712</u>	Semester: 7 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
	Develop mathematical															
CO1.	models to describe	2		3									1		3	1
	vehicle performance															
	Analyze fuel efficiency															
CO2.	of hybrid and electric	2	3				2	1					1		3	1
	drive trains															
CO3.	Control various types of	2		3	3		3						1	3		1
CO3.	drives.	2		3	3		3						1	3		1
	Analyze different types															
CO4.	of energy storage	2	3				2						1	2	3	1
	systems															

CO5. Select the size of a driv system and Implement energy management strategies	t 2		3	3		3	1					1	3		1
--	-----	--	---	---	--	---	---	--	--	--	--	---	---	--	---

Subject: INTRODUCTION TO DIGITAL PROTECTION	Subject Code: <u>BELED1-713</u>	Semester: 7 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1.	To classify relays, such as; electromechanical, static and numerical relays and describe their merits and demerits	3	3				2						1	3		1
CO2.	To explain the need of numerical relaying algorithms.		3										1		3	1
CO3.	To explain the basic block diagram of a digital protection system	1 1	2										1		3	1
CO4.	To interface elements with microprocessor to develop digital relays	3		3	2		3						1	3		1

Subject: <u>DIGITAL SIGNAL</u> <u>PROCESSING</u>	Subject Code: <u>BELED1-714</u>	Semester: 7 th
Credit: 3	LTP <u>300</u>	Duration: <u>45 Hrs.</u>

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	To represent signals mathematically in discrete-time, and in the frequency domain and analyze them using Z-transform	2	3	3									1		3	1
CO2.	To implement Discrete Time Systems using the Discrete-Fourier Transform (DFT) and the FFT algorithms.	2		3									1		3	1
CO3.	To design digital filters for various applications	2		3		1	3						1	3		1
CO4.	To apply digital signal processing for the analysis of real-life signals	2	3	3		1	1						1	3	3	1

Subject: PROJECT MANAGEMENT & ENTREPRENEURSHIP	Subject Code: BHSMC0-024	Semester: 7 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1.	Understand project characteristics and various stages of a project	3	3				1					3	1	3	2	1
CO2.	Analyze the learning and understand techniques for Project planning, scheduling and Execution Control.	3	3			1	3					3	1	3	2	1
CO3.	Know the parameters to assess opportunities and constraints for new business ideas	3			3		2					3	1	3	2	1
CO4.	Understand the systematic process to select and screen a business idea	3	2	3			2					3	1	3	2	1
CO5.	Understand various funding opportunities available for start-up and new ventures	3	2	1			3					3	1	3	2	1

8th Sem

Subject: GENERATION & ECONOMICS OF ELECTRIC POWER	Subject Code: <u>BELES1-801</u>	Semester: 8 th
Credit: 3	LTP <u>300</u>	Duration: <u>45 Hrs.</u>

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2	PSO3
CO1.	Students will be able to differentiate among types of loads and related terminology		3				1						1		3	1
CO2.	They will be able to estimate various costs involved in the power plants and tariffs imposed on different categories of consumers		3				3					2	1	3	2	1
CO3.	They can select the size and location of a power plant	2		3	2		3	2				2	1	3		1
CO4.	They will be enabled to co-operate hydro and steam power plants			3	2		3	2				2	1	3	2	1

Subject: MAJOR PROJECT	Subject Code: BELES1 - 802	Semester: 8th
Credit: 8	LTP <u>008</u>	Duration: <u>Hrs.</u>

COs	Statement	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	Student will be trained to apply the theoretical knowledge and practical experience gained so far, by conducting the study in the form of a project work.		1	3	2		1			3	2	2	1	3		1
CO2.	Students will get a good training in R&D work and technical leadership		1	3	2		1			3		2	1		3	1

Subject: <u>ELECTRICAL ENERGY</u> <u>CONSERVATION & AUDITING</u>	Subject Code: BELED1- 811	Semester: 8th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1.	To do mana gement and audit of energy.	3	2		1	1	3	3				1	1	3	2	1
CO2.	To calculate different types of losses and hence evaluate and improve energy efficiency of electrical systems	2	3	3	3		3	3				1	1	3	2	1
CO3.	ro evaluate performance and efficiency of HVAC systems, fans, blowers, pumps, compressed air systems and cooling towers	2	3		3		3	3				1	1	3	2	1

Subject: POWER SYSTEM DYNAMICS & CONTROL	Subject Code: BELED1- 812	Semester: 8 th
Credit: 3	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	To evaluate the impact of stability on the operation and control of power system	2	3		2		3						1		3	1
CO2.	To analyze linear dynamical systems and can apply numerical integration methods	2	3	3		3							1		3	1
CO3.	To model different power system components for the study of stability	2		3		3							1		3	1
CO4.	To use methods to improve stability	2		3			3						1	3		1

Subject: <u>CONTROL SYSTEMS</u> <u>DESIGN</u>	Subject Code: BELED1- 813	Semester: 8 th
Credit: <u>3</u>	LTP <u>300</u>	Duration: <u>45 Hrs.</u>

COs	Statement	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	Design classical control	2		3		1	1						1	3		1
CO1.	systems in time domain.			3		1	1						1	3		1
	Design classical control															
CO2.	systems in frequency	2		3		1	1						1	3		1
	domain.															
	Design controller															
CO3.	structures (P, PI, PID,	2		3		1	1						1	3		1
	compensators).															
	Examine the															
	controllability &															
CO4.	observability and can	2		3	3	1	1						1	3	3	1
	design controllers using															
	state-space approach															

Subject: ADVANCED ELECTRIC DRIVES	Subject Code: <u>BELED1-814</u>	Semester: 8 th
Credit: 3	LTP300	Duration: 45 Hrs.

COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	Understanding about the control of power converters and their control methods	3	2	3	3								1	3	2	1
CO2.	Control power converters for controlling AC drives	3		3	3	3	3						1	3		1
CO3.	Apply the various control techniques for induction motor drives and synchronous motor drives	3		3	3	3	3						1	3		1
CO4.	Control motion using digital signal processors					3	3						1	3		1

Subject: <u>RESTRUCTURING OF</u> <u>POWER INDUSTRY</u>	Subject Code: <u>BELED1-815</u>	Semester: 8th
Credit: <u>3</u>	LTP <u>300</u>	Duration: 45 Hrs.

COs	Statement	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1.	Students will be enabled to identify the need of restructuring and deregulation of power industry	3	3				3						1	3		1
CO2.	They will be able to manage congestion of transmission network.	3			3		3					1	1	3	2	1
CO3.	They will be able to estimate pricing of transmission network	2	3	2			3					1	1	3	2	1
CO4.	Define and describe the Technical and Non-technical issues in restructured power industry	3			3		3	1					1	2	3	1

Enter Correction levels 1, 2 or 3 as defined below: