MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB), INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) \& 12 (B) of UGC; Member AIU)

Department:	$\frac{\text { DEPARTMENT OF MATHEMATICS }}{\text { MRSPTU MAIN CAMPUS,BATHINDA }}$
Program: \quad B.SC(HONS) (2018)	

COs, POs, PSOs Mapping

Subject: Calculus-I	Subject Code: BMAT1-101	Semester: $1^{\text {st }}$
Credit: 5	LTP410	Duration: 55Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	Apply the knowledge of basic concepts of calculus in order to study theoretical development of different mathematical techniques and their applications.	2	1		3	2	1	2			2	1	1	2	2	
CO2	Develop the skills to sketch the curves in a plane using its mathematical properties in the different coordinate systems of reference.	1	3		2		1							1	1	
CO3	Apply derivatives for the computation of directional derivative and Optimization.	2	1		1	1	1	2			1	1	1	2	2	
CO4	Extend the knowledge of Partial derivatives of higher order for further exploration of the subject for going into higher education	2	1		1			2						2	2	

Subject: Algebra-I	Subject Code: BMAT1-102	Semester: $\underline{1}^{\text {st }}$
Credit: $\underline{\mathbf{5}}$	LTP $\mathbf{4 1 0}$	Duration: $\underline{\text { 55Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	Understand the basic concepts of linear transformations, the Rank-Nullity Theorem, matrix of a linear transformation, algebra of transformations and the change of basis.	3			2			1				1		1	2	
CO2	Analyze\& solve problems related to Matrices, Quotient space, Homomorphism \& Isomorphism of vector space and Null space etc.	1			2	2			2			1		2	1	
CO3	Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix, using rank.	1			2	2						1		1	2	
CO4	Find eigenvalues and corresponding eigenvectors for a square matrix	1			2	2			2					1	2	

Subject: Analysis-I	Subject Code: BMAT1-103	Semester: $\underline{1}^{\text {st }}$
Credit: $\underline{\mathbf{5}}$	LT P 410	Duration: 55Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand many properties of the real line \mathbb{R}, including completeness and Archimedean properties				3				2			3		3	3	
CO2	Apply the ratio, root, and alternating series and limit comparison test for convergence and absolute convergence of an infinite series of real numbers.					1	1		3			3		3	2	
CO3	Understand the concept of continuous functions, uniform continuity and discontinuity				1				2			2		3	3	
CO4	Apply mean value theorem, Taylor's theorem					3	1					1		3	3	

Subject: Fortran Programming	Subject Code: BCAP1-101	Semester: $\underline{1^{\text {st }}}$
Credit: $\underline{\mathbf{4}}$	LTP $\mathbf{4 0 0}$	Duration: $\underline{\mathbf{4 5 H r s} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Operating Systems, Linux, Windows and other Operating Systems, Open Source Foundation and GNU		1			1	1	1		1	2	1	1	1	2	3
CO2	Programming and Problem Solving, Basic FORTRAN, Control Constructs.	1	2	1		2		1	2	2	2	2	2	1	2	3
CO3	Skills for writing computational programs.	1	2	1	1		2			1	3	3	3	1	2	3
CO4	Different numerical techniques utilized in programming.		1	1	1	1	2		1	2	3	3	3	1	2	3

Subject: Fortran Programming lab	Subject Code: BCAP1-102	Semester: $\underline{1}^{\text {st }}$
Credit: 1	LTPO02	Duration: $\mathbf{3 0 H r s}$. $^{\text {S }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Use operating Systems, Linux, Windows and other Operating Systems, Open-Source Foundation and GNU	1	1	1	1	1	1	2	2	3	3	3	2	1	2	3
CO2	Use Programming and Problem Solving, Basic FORTRAN, Control Constructs.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
CO3	Design and code mid-level problems.	1	2	1	1	2	3	2	3	3	3	3	2	1	2	3
CO4	Understand basic programming concepts Isomorphism of vector space and Null space etc.	2	2	1	1	2	3	2	3	3	3	3	2	1	2	3

Subject: English	Subject Code: BHUM1-101	Semester: $\underline{1}^{\text {st }}$
Credit: $\underline{4}$	LTP $\underline{\mathbf{4 0 0} \mathbf{0}}$	Duration: $\underline{55 \mathrm{Hrs} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	To know about the various dimensions of communcation skills and to understand its importance	1	1	1	1	1	1	2	2	3	3	3	2			
CO2	To comprehend the role of communication at different levels (verbal, non-verbal, official, and non-official).	1	2	1	1	2	2	2	3	3	3	3	2			
CO3	To know about the intricacies of written communication for office use.	1	2	1	1	1	3	2	3	3	3	3	2			
CO4	To make pupil prepare for presenting him/herself in interviews, GD etc.	1	2	1	1	1	3	2	3	3	3	3	2	2	2	2

Subject: Calculus-II	Subject Code: BMAT1-204	Semester: $\mathbf{2}^{\text {nd }}$
Credit: $\underline{\mathbf{5}}$	LTP $\underline{\mathbf{4 1 0}}$	Duration: 55Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	Apply the knowledge of advanced concepts of calculus in order to study theoretical development of different mathematical techniques and their applications.	2	1		3	2	1	2			2	1	1	2	2	
CO2	Use the idea of reduction formulae enables to solve an integral problem by reducing it to a problem of solving an easier integral problem	1			1		1	1				2		2	1	
CO3	Develop the knowledge of computing arc length, area and volume by using integration.	1	2		1	2	1	1				1		1	2	
CO4	Extend the knowledge of multiple integrals, scalar surface integrals, vector surface integrals and theorems of Green, Gauss and Stokes for exploring its	1	2		1		2					1		2	2	

Subject: Algebra-II	Subject Code: BMAT1-205	Semester: $\underline{\text { 2 }}^{\text {nd }}$
Credit: $\underline{\mathbf{5}}$	LTP $\mathbf{4 1 0}$	Duration: $\mathbf{5 5 H r s}$.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	Understand the concept of group, Ring and their properties.	1			2			1				2		2	3	
CO2	Analyze\& demonstrate different types of algebraic structures such as subgroups Normal subgroups and Quotient groups to understand and use the fundamental results in Algebra.	1			2	2		2				2		2	1	
CO3	Apply the concepts of isomorphism and homomorphism for groups and rings to solve different types of problems.	1			2		2	2				1		2	3	
CO4	Access the idea of inner product space and determine its orthogonally on vector space, including gram Schmidt orthogonalisation to obtain orthonormal basis	1			2			2				2			1	

Subject: Analysis-II	Subject Code: BMAT1-205	Semester: $\mathbf{2}^{\text {nd }}$
Credit: $\underline{\mathbf{5}}$	LT P 4 10	Duration: 55Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Compare countable and uncountable sets	2		1	2							3		3	2	
CO2	Apply various tests uniform convergence			1	2	2						1		3	2	
CO3	Understand the interchange of limit ,derivative, integrals				3		1					1		3	2	1
CO4	Understand the concept of metric spaces			1	3							2		3	2	

Subject: Fundamentals of Computer and C Programming	Subject Code: BCAP1-203	Semester: $\underline{2}^{\text {nd }}$
Credit: $\underline{\mathbf{4}}$	LTP $\mathbf{4 0 0}$	Duration: $\mathbf{4 5 H r s .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Implement programs using C.	1	2	3										2	1	3
CO2	Implement fundamental data structures in C.	3	1								2			2	1	3
CO3	Understand the fundamentals of hardware, software, and programming.												3	2	1	3
CO4	Understand the logic building used in Programming.					2		1						2	1	3

Subject: Fundamentals of Computer and C Programming Lab	Subject Code: BCAP1-204	Semester: $\underline{\text { 2 }}^{\text {nd }}$
Credit: $\underline{\mathbf{1}}$	LTP $\underline{\mathbf{0 0 2}}$	Duration: $\underline{\text { 30Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Implement programs using C	1	1	2	1	1	2	2	2	3	3	3	2	1	2	3
CO2	Implement fundamental data structures in C. Isomorphism of vector space and Null space etc.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
$\mathbf{C O 3}$	Write the programming solutions for solving various real-life problems. augmented matrix, using rank.	1	2	1	1	1	3	2	3	3	3	3	2			
$\mathbf{C O 4}$	Implement Programs with pointers and arrays, perform pointer arithmetic, and use the pre-processor.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3

Subject: Environmental Science	Subject Code: BHUM1-202	Semester: $\underline{2}^{\text {nd }}$
Credit: $\underline{4}$	LTP $\underline{\mathbf{4 0 0}}$	Duration: $\underline{\text { 45Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the value of non-renewable Resources such as petroleum and natural gas. \cdot	1	1	2	1	1	2	2	2	3	3	3	2		3	
$\mathbf{C O 2}$	Learn that how the bodies of living organisms decomposes after death.	1	2	1	1	2	2	2	3	3	3	3	2		2	
$\mathbf{C O 3}$	Find out the causes of distinct sorts of pollution and their solutions	1	2	1	1	1	3	2	3	3	3	3	2		3	
$\mathbf{C O 4}$	Grasp knowledge that how the rain water can be stored and used while climate changes like draught.	1	2	1	1	1	3	2	3	3	3	3	2		2	

Subject: Differential equations-I	Subject Code: BMAT1-307	Semester: $\mathbf{3}^{\text {rd }}$
Credit: $\underline{\mathbf{5}}$	LTP4 10	Duration: 55Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the concept of ordinary differential equation, formation and order and degree of differential equation etc.	2			2	1	2	2	3			1		2	3	1
CO2	Apply various methods to Solve first order non-linear differential equation and linear differential equations of higher order	1			3	1	2	2	3			2		3	2	
CO3	Apply various power series methods to find series solution of differential equations.	2			3	1	2	1	1			1		1	2	
CO4	Apply differential equations to significant applied and theoretical problems.	2			3	1	2	2	2			1		1	2	

Subject: Mathematical statistics	Subject Code: BMAT1-308	Semester: $\mathbf{3}^{\text {rd }}$
Credit: $\underline{\mathbf{5}}$	LT P 410	Duration: $\mathbf{5 5 \mathrm { Hrs } .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand and use the concept of probability theory and statistics to solve industrial problems	2	1		2	3		1			2	1	1	2		
CO2	Define and examine the random sampling and graphical methods with technology	1	3		2	1	1	1						2		2
CO3	Recognize and compute the sampling distributions, sampling distributions of means and variances (S2) and the tand F-distributions	2	1		1	1	1	2			1	1	1	2		1
CO4	Recognize the relationship between the confidence interval estimation and tests of hypothesis	2	1	3	1	1		2				1		1		1

Subject: Geometry	Subject Code: BMAT1-309	Semester: $\underline{3}^{\text {rd }}$
Credit: $\underline{\mathbf{5}}$	LTP P $\underline{10}$	Duration: $\underline{55 \mathrm{Hrs} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the relationship between different coordinate systems, transformation of axes and intersection of three planes.	1	3		1		1							1	1	
CO2	Apply the knowledge to obtain the equation of cone, enveloping cone, tangent plane, reciprocal cone of given cone and prove their results.	1	2		1		1							1	1	
CO3	Develop the equation of cylinder, right circular cylinder, enveloping cylinder.	1	2		1		1							1	1	
CO4	Introduce the family of spheres passing through a circle, tangent planes and normal lines to a sphere and radical planes.	1	2		1		1							2	1	

Subject: Number Theory	Subject Code: BMAT1-310	Semester: $\mathbf{3}^{\text {rd }}$
Credit: $\underline{\mathbf{5}}$	LT P $\underline{\mathbf{1 1 0}}$	Duration: $\mathbf{5 5 \mathrm { Hrs } .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Find quotients and remainders from integer division, Division algorithm, Apply Euclid's algorithm for the greatest common divisor, Linear Diophantine equations, Prime numbers	1	3		1		1	2						1		
CO2	Learn about congruence, residue classes and least residues add and subtract integers, modulo n, multiply integers and calculate powers, modulo n, Simultaneous linear congruence's	1	2		1		1	2						1		
CO3	Familiarize with Arithmetic modulo p and related theorems, Solving congruence modulo prime powers.	1	2		1		1	2						1		
CO4	Learn about Euler's Phi function, Euler's theorem and properties of the Phi Function	1	2		1		1	3						1		

Subject: Object Oriented Programming	Subject Code: BCAP1-305	Semester: $\mathbf{3}^{\text {rd }}$
Credit: $\underline{\mathbf{3}}$	LT P $\underline{\mathbf{3 0 0}}$	Duration: $\underline{\text { 45Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Implement programs using C++.	1	1	1	1	1	2	2	2	3	3	3	2	1	2	3
CO2	Implement fundamental data structures in C++.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
CO3	Learn various concepts of object-oriented approach towards problem solving.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
CO4	Create computer-based solutions to various real-world problems using Object oriented programming.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3

Subject: Object Oriented Programming lab	Subject Code: BCAP1-306	Semester: $\underline{3}^{\text {rd }}$
Credit: $\underline{1}$	LTP $\underline{\mathbf{0 0 2}}$	Duration: $\underline{\text { 30Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	P010	PO11	PO12	PSO1	PSO2	PSO3
CO1	Implement programs using C++.	1	1	1	1	1	2	2	2	3	3	3	2	1	2	3
CO2	Implement fundamental data structures in $\mathrm{C}++$.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
CO3	Learn programming from real world examples.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
CO4	Create simple programs using classes and objects	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3

Subject: Differential equations-II	Subject Code: BMAT1-410	Semester: $\underline{4}^{\text {th }}$
Credit: $\underline{\mathbf{5}}$	LTP $\underline{\mathbf{4 1 0}}$	Duration: $\underline{55 \mathrm{Hrs} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the concept of partial differential equation of first order (linear and nonlinear).	2			2	1	2	2	3			1		2	2	
CO2	Solve partial differential equations (linear and nonlinear) using various methods and apply these methods in solving some physical problems.	1			3	1	2	2	3			2		1	2	
CO3	Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation	2			3	1	2	1	1			1		2	1	
CO4	Undertake any advanced course on ordinary as well as partial differential equations	2			3	1	2	2	2			1		2	1	

Subject: Linear Algebra	Subject Code: BMAT1-411	Semester: 4 $^{\text {th }}$
Credit: $\underline{5}$	LT P 410	Duration: 55Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	P010	PO11	PO12	PSO1	PSO2	PSO3
CO1	Apply the knowledge of Algebra which enables to build mathematical thinking and skill.	1	2									1		2		
CO2	Analyze\& solve problems related to Rank and Nullity of linear transformation etc.	2		1	3									2		
CO3	Find eigenvalues and corresponding eigenvectors for a square matrix.	2			1			2	1					1		
CO4	Identify the problems in mathematics and find their suitable solution.	1		1	2			3						2		

Subject: Mechanics-I	Subject Code: BMAT1-412	Semester: $\underline{4^{\text {th }}}$
Credit: $\underline{5}$	LT P $\underline{410}$	Duration: $\underline{\text { 55Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Use Lagrange's equation for deriving equation of motions			2	2	3					2			1	3	
CO2	Apply the knowledge in Dynamics at higher levels.			1	2	3	3	2			2			3		
CO3	Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by Newton.			2	1	2	3							2	3	
CO4	Study mechanical systems under generalized coordinate systems, Virtual work, Energy and momentum, to study mechanics developed by Lagrange, Hamilton, Jacobi and small oscillation				3		2	3	3		3	2		2	3	

LTP410
Duration: 55Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Learn various types of numerical methods to find the roots of nonlinear equations and solution of a system of linear equations.	3	3		2	3	1	2	2			2		2	1	2
CO2	Find values for a tabulated function using Interpolation techniques.	1	2		3	2	1	2				2		1	2	1
CO3	Apply these numerical methods to solve ordinary differential equation.	2			3	2	1	1	2			1		3	1	2
CO4	Introduce the basic concepts of Numerical Mathematics to solve the problems arising in science and engineering etc.	1	1		3	3	1	2	1			2		1	3	2

Subject: Latex and R	Subject Code: BCAP1-407	Semester: $4^{\text {th }}$
Credit: $\mathbf{3}$	LTP 300	Duration: 45Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Use Latex, Basic tools for Formatting text.		2	2						1				2	2	2
CO2	Producing Mathematical Formulae using Latex.			1			3	2			2			2	1	2
CO3	Able to formulate arrays and matrices		2		1		2				2			2	2	3
CO4	Consequently students can write research papers and prepare presentations.				3		2					2		2	1	2

Subject: Latex and R lab	Subject Code: BCAP1-408	Semester: $\mathbf{4}^{\text {th }}$
Credit: $\underline{1}$	LT P O02	Duration: $\underline{\mathbf{3 0 H r s} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Use Latex, Basic tools for Formatting text		2	2						1				2		3
CO2	Producing Mathematical Formulae using Latex			1		3	2			2				1	2	3
CO3	Arrays and Matrices	2			1		2				2			1		3
CO4	Consequently students can write research papers and prepare presentations.				3		2		3			2		2	2	3

Subject: Mechanics-II	Subject Code: BMAT1-514	Semester: $\underline{5}^{\text {th }}$
Credit: $\underline{5}$	LT P 4 10	Duration: 55Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Thorough understanding of dynamics is essential to understanding any modern development of Physical sciences.			2	2	3					2			1	3	
CO2	Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by Newton.			1	2	2	3	2			2			2	3	
CO3	Mechanics and its applications are an excellent example of how physics and mathematics work hand in hand to give a complete picture of the real problems.			2	1	2	3							3	1	
CO4	Reduction of two-body central force problem to an equivalent one-body problem, Central force motion in a plane.				3		2	3	3		3	2		2	2	

Subject: Mathematical Methods	Subject Code: BMAT1-515	Semester: 5 $^{\text {th }}$
Credit: $\underline{5}$	LT P $\underline{410}$	Duration: 55 Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Fourier series and its applications.			2	2	3					2			3	3	
CO2	Fourier transform and its applications to P.D.E			1	2	2	3	2			2			3	2	
CO3	Laplace transform and its applications to solutions of integrals and Differential Equations.			2	1	2	3							2	2	
CO4	Z-transforms and inverse Z-transforms and its importance in context of Difference equations.				3		2	3	3		3	2		2	1	

Subject: Differential Geometry	Subject Code: BMAT1-516	Semester: $\mathbf{5}^{\text {th }}$
Credit: $\underline{\mathbf{5}}$	LT P $\mathbf{4 1 0}$	Duration: $\underline{\mathbf{5 5 H r s} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Students will be at ease to understand the various curves in space		2		3		1							2		
CO2	Students will be able to understand the behavior of the curves in various situations.				2	2						2			1	
CO3	Students will be able to understand the Concept of surface				2		2					2		2		
CO4	Students will be able to understand geodesics				1							2		1		

Subject: Finite Element Methods	Subject Code: BMAT1-517	Semester: 5 $^{\text {th }}$
Credit: $\underline{\mathbf{5}}$	LT P $\mathbf{4 1 0}$	Duration: 5 5Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	Demonstrate the steps of finite element methods in finding solution of Dynamic, Heat transfer , Solid Mechanic and Eigen value problems			2	2	3								2	3	
CO2	Analyse the real time situations and convert it into Finite Methods to find solutions			1	2			2						2		
CO3	Solve the Ordinary differential equations with Finite Element Method	2			1		2							3		
CO4	Solve Elliptic, Hyperbolic and Parabolic P.D.E by Finite Element Method				3		2		3			2		3	1	

Subject: MATLAB	Subject Code: BCAP1-509	Semester: 5th
Credit: $\underline{3}$	LT P $\mathbf{3 0 0}$	Duration: $\mathbf{4 5 H r s}$.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Use MatLab for Basic mathematics computations	1	2	1	1	1	2	2	2	3	3	3	2	1		3
CO2	Creating M-files,working with script tools and also writing script file	1	2	1	1	2	2	2	3	3	3	3	2	2	1	2
CO3	Program scripts and functions using the MatLab development environment, Able to use basic flow controls (if else, for, while).	1	2	1	1	1	3	2	3	3	3	3	2	2		2
CO4	Use matlab for calculus , numerical integration and other mathematical operations.	1	2	1	1	1	3	2	3	3	3	3	2	1		3

Subject: MATLAB Lab	Subject Code: BCAP1-510	Semester: 5th
Credit: $\underline{1}$	LT P $\mathbf{0 0 2}$	Duration: $\mathbf{1 5 H r s}$.

| COs | Statement | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | Understand the main features of the MatLab development
 environment | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 3 |
| $\mathbf{C O 2}$ | Design simple algorithms to solve problems | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 3 |
| $\mathbf{C O 3}$ | Write simple programs in MaTLab to solve scientific and
 mathematical problems | 1 | 2 | 2 | 1 | 1 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 1 | 3 |
| $\mathbf{C O 4}$ | Understand the main features of the MATLAB/SCILAB
 program development environment. | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 2 |

Subject: LPP	Subject Code: BMAT1-618	Semester: 6th
Credit: $\underline{\mathbf{5}}$	LT P 4 1 0	Duration: 55Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	Introduce and formulate linear programming models of real life situations.	1	2													1	1
CO2	Understand the selection and implementation of graphical solution and variants of simplex method for the solution of LPP.		1		1	2	1	1			1	1	2	2	2		
CO3	Develop the relationships between the primal and dual problems and their solutions.				1	2						1	2	1			
$\mathbf{C O 4}$	Apply the knowledge to solve two-person zero-sum game problems	1	1			2	1	1				2	2	1	1		

Subject: Ring Theory	Subject Code: BMAT1-619	Semester: $\underline{6}^{\text {th }}$
Credit: $\underline{\mathbf{5}}$	LT P 410	Duration: $\underline{\mathbf{5 5 H r s} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Know the fundamental concepts in ring theory such as the concepts of ideals, quotient rings, integral domains, and fields.		1		3		2							3	1	2
CO2	Ring theory is powerful in terms of its scope and generality, but it can be simply described as the study of systems in which addition and multiplication are possible.				2	2						2		2	1	2
CO3	Find radicals, bases etc. for special classes of finite dimensional algebras. The student is able to describe the corresponding module if a representation is given, and vice versa.				2		2					3		2	1	2
CO4	Apply various concepts in real life problems				1							2		2	1	2

Subject: Mathematical Modelling	Subject Code: BMAT1-620	Semester: $\underline{\mathbf{6}^{\text {th }}}$
Credit: $\underline{\mathbf{5}}$	LTP $\mathbf{4 1 0}$	Duration: $\underline{\underline{\mathbf{5}} \mathrm{Hrs.}}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Demo Understand the concept of several modelling techniques and analyze the resulting systems	1	1			3	1	2	3					3	1	
CO2	Analyse and construct mathematical models inspired by real life problems.	1	2		2	3	1	2	3					3	1	1
CO3	The use of mathematics software to observe the implementations of the above mentioned methods efficiently, and to enhance the problem solving skills.	2	3		2	2	2	1	2	3		2		3	2	1
CO4	Solve physical problems using differential equations.nstrate the steps of finite element methods in finding solution of Dynamic, Heat transfer, Solid Mechanic and Eigen	1	2		1	2	1							3	2	

Subject: Discrete Mathematics	Subject Code: BMAT1-621	Semester: $\underline{\mathbf{6}^{\text {th }}}$
Credit: $\underline{\mathbf{5}}$	LTP $\mathbf{4 1 0}$	Duration: $\underline{\mathbf{5 5 H r s} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Significant concepts of partial order relations, Recurrence relations, Boolean algebra, Lattices and Graph Theory.		1		2		3							3	2	2
CO2	To understand logical concepts and to show logical equivalences by using truth tables and rules in logics.				3	2				2		2		2	1	2
CO3	Appreciate the definition and basics of graphs along with types and their examples.				2		2					3		2	1	2
CO4	Understand the definition of a tree and learn its applications to fundamental circuits. Know the applications of graph theory to network flows. Relate the graph theory to the realworld problems.	1			1		2					2		2	1	2

Subject: Financial Mathematics	Subject Code: BMAT1-622	Semester: $\underline{\text { 6th }}$
Credit: $\underline{\mathbf{5}}$	LTP4 10	Duration: 55Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Quantitative analysis of financial transactions, understanding of different types of interest rates.	1		2	1		2		1			2		3	1	
CO2	Accumulated sum of annual annuity and of P-due annuity.		1	1		2		2			2			2	1	
CO3	Understand the concepts related to financial transactions yield.			2	2						1			2	1	
CO4	Analyze real investments with different yields.					2	3		2			2		2	1	

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB), INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) \& 12 (B) of UGC; Member AIU)

Department:	$\frac{\text { DEPARTMENT OF MATHEMATICS }}{\text { MRSPTU MAIN CAMPUS,BATHINDA }}$
Program: $\quad \underline{\text { B.SC }(\mathrm{HONS})(2019)}$	

COs, POs, PSOs Mapping

Subject: Calculus-I	Subject Code: BMATS1-101	Semester: $\mathbf{1}^{\text {st }}$
Credit: $\mathbf{4}$	LT P 310	Duration: $\mathbf{6 0}$ Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	Apply the knowledge of basic concepts of calculus in order to study theoretical development of different mathematical techniques and their applications.	2	1		3	2	1	2			2	1	1	2	2	
CO2	Develop the skills to sketch the curves in a plane using its mathematical properties in the different coordinate systems of reference.	1	3		2		1							1	1	
CO3	Apply derivatives for the computation of directional derivative and Optimization.	2	1		1	1	1	2			1	1	1	2	2	
CO4	Extend the knowledge of Partial derivatives of higher order for further exploration of the subject for going into higher education	2	1		1			2						2	2	

Subject: Algebra-I	Subject Code: BMATS1-102	Semester: $\underline{1}^{\text {st }}$
Credit: 4	LT P 3 1 10	Duration: $\underline{60 \mathrm{Hrs} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
C01	Understand the basic concepts of linear transformations, the Rank-Nullity Theorem, matrix of a linear transformation, algebra of transformations and the change of basis.	3			2			1				1		1	2	
CO2	Analyze\& solve problems related to Matrices, Quotient space, Homomorphism \& Isomorphism of vector space and Null space etc.	1			2	2			2			1		2	1	
CO3	Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix, using rank.	1			2	2						1		1	2	
CO4	Find eigenvalues and corresponding eigenvectors for a square matrix	1			2	2			2					1	2	

Subject: Analysis-I	Subject Code: BMATS1-103	Semester: $\underline{1}^{\text {st }}$
Credit: $\underline{\mathbf{4}}$	LT P $\underline{\mathbf{3 1 0} \mathbf{0}}$	Duration: $\underline{\mathbf{H 0 H r} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand many properties of the real line \mathbb{R}, including completeness and Archimedean properties				3				2			3		3	3	
CO2	Apply the ratio, root, and alternating series and limit comparison tests for convergence and absolute convergence of an infinite series of real numbers.					1	1		3			3		3	2	
CO3	Understand the concept of continuous functions, uniform continuity and discontinuity				1				2			2		3	3	

Subject: Fortran Programming	Subject Code: BMATS1-104	Semester: $\mathbf{1}^{\text {st }}$
Credit: $\underline{\mathbf{4}}$	LT P 3 3 1 0	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Operating Systems, Linux, Windows and other Operating Systems, Open Source Foundation and GNU CO2Programming and Problem Solving, Basic FORTRAN, Control Constructs.		1			1	1	1		1	2	1	1	1	2	3
CO3	Skills for writing computational programs.	1	2	1		2		1	2	2	2	2	2	1	2	3
CO4	Different numerical techniques utilized in programming.		1	2	1	1		2			1	3	3	3	1	2

Subject: Fortran Programming lab	Subject Code: BMATS1-105	Semester: $\underline{1}^{\text {st }}$
Credit: $\underline{\mathbf{1}}$	LT P $\underline{\mathbf{0 0 2}}$	Duration: $\underline{\mathbf{3 0 H r s} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Use operating Systems, Linux, Windows and other Operating Systems, Open-Source Foundation and GNU	1	1	1	1	1	1	2	2	3	3	3	2	1	2	3
CO2	Use Programming and Problem Solving, Basic FORTRAN, Control Constructs.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
CO3	Design and code mid-level problems.	1	2	1	1	2	3	2	3	3	3	3	2	1	2	3

1
22

3
2

Subject: English	Subject Code: BHSMC0-001	Semester: $\underline{1}^{\text {st }}$
Credit: $\underline{\mathbf{4}}$	LTP $\underline{\mathbf{3 1 0} \mathbf{0}}$	Duration: $\underline{\mathbf{0 0 H r s} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	To know about the various dimensions of communication skills and to understand its importance	1	1	1	1	1	1	2	2	3	3	3	2			
CO2	To comprehend the role of communication at different levels (verbal, non-verbal, official, and non-official).	1	2	1	1	2	2	2	3	3	3	3	2			
CO3	To know about the intricacies of written communication for office use.	1	2	1	1	1	3	2	3	3	3	3	2			
CO4	To make pupil prepare for presenting him/herself in interviews, GD etc.	1	2	1	1	1	3	2	3	3	3	3	2	2	2	2

Subject: Calculus-II	Subject Code: BMATS1-201	Semester: $\underline{2}^{\text {nd }}$
Credit: $\underline{4}$	LT P 3 1 $\mathbf{0}$	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Apply the knowledge of advanced concepts of calculus in order to study theoretical development of different mathematical techniques and their applications.	2	1		3	2	1	2			2	1	1	2	2	
CO2	Use the idea of reduction formulae enables to solve an integral problem by reducing it to a problem of solving an easier integral problem	1			1		1	1				2		2	1	

CO3	Develop the knowledge of computing arc length, area and volume by using integration.	1	2		1	2	1	1				1		1	2
CO4	Extend the knowledge of multiple integrals, scalar surface integrals, vector surface integrals and theorems of Green, Gauss and Stokes for exploring its use in physical sciences	1	2		1		2							2	2

Subject: Algebra-II	Subject Code: BMATS1-202	Semester: $\underline{\text { nd }}^{\text {nd }}$
Credit: $\underline{4}$	LTP $\mathbf{3 1 0}$	Duration: $\underline{\text { 0Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the concept of group, Ring and their properties.	1			2			1				2		2	3	
CO2	Analyze\& demonstrate different types of algebraic structures such as subgroups Normal subgroups and Quotient groups to understand and use the fundamental results in Algebra.	1			2	2		2				2		2	1	
CO3	Apply the concepts of isomorphism and homomorphism for groups and rings to solve different types of problems.	1			2		2	2				1		2	3	
CO4	Access the idea of inner product space and determine itsorthogonally on vector space, including gram Schmidt orthogonalisation to obtain orthonormal basis	1			2			2				2			1	

Subject: Analysis-II	Subject Code: BMATS1-203	Semester: $\underline{2}^{\text {nd }}$
Credit: $\underline{4}$	LT P 3 1 $\mathbf{0}$	Duration: $\underline{60 \mathrm{Hrs} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Compare countable and uncountable sets	2		1	2							3		3	2	
CO2	Apply various tests uniform convergence			1	2	2						1		3	2	

Subject: Fundamentals of Computer and C Programming	Subject Code: BMATS1-204							Semester: $\underline{\mathbf{2 d}^{\text {nd }}}$							
Credit: 4	LTP 310							Duration: 60Hrs.							
Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Implement programs using C.	1	2	3										2	1	3
Implement fundamental data structures in C.	3	1								2			2	1	3
Understand the fundamentals of hardware, software, and programming.												3	2	1	3
Understand the logic building used in Programming.					2		1						2	1	3

Subject: Fundamentals of Computer and C Programming Lab	Subject Code: BMATS1-205	Semester: $\underline{\mathbf{2}}^{\text {nd }}$
Credit: $\underline{\mathbf{1}}$	LT P O 002	Duration: $\underline{\mathbf{3 0 H r s} .}$

| COs | Statement | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | Implement programs using C | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 1 | 2 | 3 |
| CO2 | Implement fundamental data structures in C.
 Isomorphism of vector space and Null space etc. | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 2 | 3 |
| CO3 | Write the programming solutions for solving various
 real-life problems.
 augmented matrix, using rank. | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | | 2 | 3 |
| CO4 | Implement Programs with pointers and arrays, perform
 pointer arithmetic, and use the pre-processor. | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 2 | 3 |

Subject: Environmental Science	Subject Code: BMNCC0-003	Semester: $\mathbf{2}^{\text {nd }}$
Credit: $\underline{4}$	LT P 3 1 0	Duration: $\underline{\text { 60Hrs. }}$

| COs | Statement | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{C O 1}$ | Understand the value of non-renewable Resources
 such as petroleum and natural gas.
 \cdot | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | | 3 | |
| $\mathbf{C O 2}$ | Learn that how the bodies of living organisms
 decomposes after death. | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | | 2 | |
| $\mathbf{C O 3}$ | Find out the causes of distinct sorts of pollution and
 their solutions | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | | 3 | |
| $\mathbf{C O 4}$ | Grasp knowledge that how the rain water can be stored
 and used while climate changes like draught. | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | | 2 | |

Subject: Differential equations-I	Subject Code: BMATS1-301	Semester: 3 $^{\text {rd }}$
Credit: $\underline{4}$	LT P 3 1 0	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	Understand the concept of ordinary differential equation, formation and order and degree of differential equation etc.	2			2	1	2	2	3			1		2	3	1
CO2	Apply various methods to Solve first order non-linear differential equation and linear differential equations of higher order	1			3	1	2	2	3			2		3	2	
CO3	Apply various power series methods to find series solution of differential equations.	2			3	1	2	1	1			1		1	2	
CO4	Apply differential equations to significant applied and theoretical problems.	2			3	1	2	2	2			1		1	2	

Subject: Mathematical statistics	Subject Code: BMATS1-302	Semester: $\mathbf{3}^{\text {rd }}$
Credit: $\underline{4}$	LT P 3 1 10	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand and use the concept of probability theory and statistics to solve industrial problems	2	1		2	3		1			2	1	1	2		
CO2	Define and examine the random sampling and graphical methods with technology	1	3		2	1	1	1						2		2
CO3	Recognize and compute the sampling distributions, sampling distributions of means and variances (S2) and the tand F-distributions	2	1		1	1	1	2			1	1	1	2		1
CO4	Recognize the relationship between the confidence interval estimation and tests of hypothesis	2	1	3	1	1		2				1		1		1

Subject: Geometry	Subject Code: BMATS1--303	Semester: $3^{\text {rd }}$
Credit: 4	LTP $\mathbf{1} \underline{10}$	Duration: 60Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the relationship between different coordinate systems, transformation of axes and intersection of three planes.	1	3		1		1							1	1	
CO2	Apply the knowledge to obtain the equation of cone, enveloping cone, tangent plane, reciprocal cone of given cone and prove their results.	1	2		1		1							1	1	
CO3	Develop the equation of cylinder, right circular cylinder, enveloping cylinder.	1	2		1		1							1	1	
CO4	Introduce the family of spheres passing through a circle, tangent planes and normal lines to a sphere and radical planes.	1	2		1		1							2	1	

Subject: Number Theory	Subject Code: BMATS1-304	Semester: 3 $^{\text {rd }}$
Credit: $\mathbf{4}$	LT P 410	Duration: 60 Hrs.

COs	Statement	PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Find quotients and remainders from integer division, Division algorithm, Apply Euclid's algorithm for the greatest common divisor, Linear Diophantine equations, Prime numbers	1	3		1		1	2						1		
CO2	Learn about congruence, residue classes and least residues add and subtract integers, modulo n, multiply integers and calculate powers, modulo n, Simultaneous linear congruence's	1	2		1		1	2						1		
CO3	Familiarize with Arithmetic modulo p and related theorems, Solving congruence modulo prime powers.	1	2		1		1	2						1		
CO4	Learn about Euler's Phi function, Euler's theorem and properties of the Phi Function	1	2		1		1	3						1		

Subject: Object Oriented Programming	Subject Code: BMATS1-305	Semester: $3^{\text {rd }}$
Credit: 4	LTP 310	Duration: 60Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Implement programs using C++.	1	1	1	1	1	2	2	2	3	3	3	2	1	2	3
CO2	Implement fundamental data structures in C++.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
CO3	Learn various concepts of object-oriented approach towards problem solving.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
CO4	Create computer-based solutions to various real-world problems using Objectoriented programming.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3

Subject: Object Oriented Programming lab	Subject Code: BMATS1-306	Semester: $\underline{3}^{\text {rd }}$
Credit: $\underline{1}$	LT P $\underline{\mathbf{0 0 2}}$	Duration: $\underline{\text { 30Hrs. }}$

Cos	Statement	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Implement programs using C++.	1	1	1	1	1	2	2	2	3	3	3	2	1	2	3
CO2	Implement fundamental data structures in C++.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
CO3	Learn programming from real world examples.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
CO4	Create simple programs using classes and objects	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3

Subject: Differential equations-II	Subject Code: BMATS1-401	Semester: $\mathbf{4}^{\text {th }}$
Credit: $\mathbf{4}$	LT P 310	Duration: $\mathbf{6 0}$ Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the concept of partial differential equation of first order (linear and nonlinear).	2			2	1	2	2	3			1		2	2	
CO2	Solve partial differential equations (linear and nonlinear) using various methods and apply these methods in solving some physical problems.	1			3	1	2	2	3			2		1	2	
CO3	Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation	2			3	1	2	1	1			1		2	1	
CO4	Undertake any advanced course on ordinary as well as partial differential equations	2			3	1	2	2	2			1		2	1	

Subject: Linear Algebra	Subject Code: BMATS1-402	Semester: $\underline{\text { 4 }}^{\text {th }}$
Credit: $\mathbf{4}$	LTP 310	Duration: $60 \underline{\text { Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Apply the knowledge of Algebra which enables to build mathematical thinking and skill.	1	2									1		2		
CO2	Analyze\& solve problems related to Rank and Nullity of linear transformation etc.	2		1	3									2		
CO3	Find eigenvalues and corresponding eigenvectors for a square matrix.	2			1			2	1					1		
CO4	Identify the problems in mathematics and find their suitable solution.	1		1	2			3						2		

Subject: Mechanics-I	Subject Code: BMATS1-403	Semester: 4 $^{\text {th }}$
Credit: $\mathbf{4}$	LT P 3 1 1 0	Duration: 60Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Use Lagrange's equation for deriving equation of motions			2	2	3					2			1	3	
CO2	Apply the knowledge in Dynamics at higher levels.			1	2	3	3	2			2			3		
CO3	Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by Newton.			2	1	2	3							2	3	
CO4	Study mechanical systems under generalized coordinate systems, Virtual work, Energy and momentum, to study mechanics developed by Lagrange, Hamilton, Jacobi and small oscillation				3		2	3	3		3	2		2	3	

Subject: Numerical Methods	Subject Code: BMATS1-404	Semester: $\underline{\text { 4 }}^{\text {th }}$
Credit: $\mathbf{4}$	LTP 310	Duration: $60 \underline{\text { Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Learn various types of numerical methods to find the roots of nonlinear equations and solution of a system of linear equations.	3	3		2	3	1	2	2			2		2	1	2
CO2	Find values for a tabulated function using Interpolation techniques.	1	2		3	2	1	2				2		1	2	1
CO3	Apply these numerical methods to solve ordinary differential equation.	2			3	2	1	1	2			1		3	1	2
CO4	Introduce the basic concepts of Numerical Mathematics to solve the problems arising in science and engineering etc.	1	1		3	3	1	2	1			2		1	3	2

Subject: Latex and R	Subject Code: BMATS1-405	Semester: $4^{\text {th }}$
Credit: 4	LT P 3 10	Duration: 60Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Use Latex, Basic tools for Formatting text.		2	2						1				2	2	2
CO2	Producing Mathematical Formulae using Latex.			1			3	2			2			2	1	2
CO3	Able to formulate arrays and matrices		2		1		2				2			2	2	3
CO4	Consequently students can write research papers and prepare presentations.				3		2					2		2	1	2

Subject: Latex and R lab	Subject Code: BMATS1-40	Semester: $\mathbf{4}^{\text {th }}$
Credit: $\underline{\mathbf{1}}$	LT P O 02	Duration: $\underline{\text { 30Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Use Latex, Basic tools for Formatting text		2	2						1				2		3
CO2	Producing Mathematical Formulae using Latex			1		3	2			2				1	2	3
CO3	Arrays and Matrices	2			1		2				2			1		3
CO4	Consequently students can write research papers and prepare presentations.				3		2		3			2		2	2	3

Subject: Mechanics-II	Subject Code: BMATS1-501	Semester: 5 $^{\text {th }}$
Credit: 4	LT P 310	Duration: 60Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Thorough understanding of dynamics is essential to understanding any modern development of Physical sciences.			2	2	3					2			1	3	
CO2	Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by Newton.			1	2	2	3	2			2			2	3	
CO3	Mechanics and its applications are an excellent example of how physics and mathematics work hand in hand to give a complete picture of the real problems.			2	1	2	3							3	1	
CO4	Reduction of two-body central force problem to an equivalent one-body problem, Central force motion in a plane.				3		2	3	3		3	2		2	2	

Subject: Mathematical Methods	Subject Code: BMATS1-502	Semester: $\mathbf{5}^{\text {th }}$
Credit: $\mathbf{4}$	LT P 310	Duration: $\mathbf{6 0 H r \text { H. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Fourier series and its applications.			2	2	3					2			3	3	
CO2	Fourier transform and its applications to P.D.E			1	2	2	3	2			2			3	2	
CO3	Laplace transform and its applications to solutions of integrals and Differential Equations.			2	1	2	3							2	2	
CO4	Z-transforms and inverse Z-transforms and its importance in context of Difference equations.				3		2	3	3		3	2		2	1	

Subject: Differential Geometry	Subject Code: BMATS1-503	Semester: $\mathbf{5}^{\text {th }}$
Credit: $\mathbf{4}$	LT P 3 1 10	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Students will be at ease to understand the various curves in space		2		3		1							2		
CO2	Students will be able to understand the behavior of the curves in various situations.				2	2						2			1	
CO3	Students will be able to understand the Concept of surface				2		2					2		2		
CO4	Students will be able to understand geodesics				1							2		1		

Subject: Finite Element Methods	Subject Code: BMATS1-504	Semester: 5 $^{\text {th }}$
Credit: $\underline{4}$	LT P 3 1 0	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	Demonstrate the steps of finite element methods in finding solution of Dynamic, Heat transfer , Solid Mechanic and Eigen value problems			2	2	3								2	3	
CO2	Analyse the real time situations and convert it into Finite Methods to find solutions			1	2			2						2		
CO3	Solve the Ordinary differential equations with Finite Element Method	2			1		2							3		
CO4	Solve Elliptic, Hyperbolic and Parabolic P.D.E by Finite Element Method				3		2		3			2		3	1	

Subject: MATLAB	Subject Code: BMATS1-505	Semester: $\mathbf{\text { 5th }}$
Credit: $\underline{4}$	LT P 3 1 0	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Use MatLab for Basic mathematics computations	1	2	1	1	1	2	2	2	3	3	3	2	1		3
CO2	Creating M-files,working with script tools and also writing script file	1	2	1	1	2	2	2	3	3	3	3	2	2	1	2
CO3	Program scripts and functions using the MatLab development environment, Able to use basic flow controls (if else, for, while).	1	2	1	1	1	3	2	3	3	3	3	2	2		2
CO4	Use matlab for calculus , numerical integration and other mathematical operations.	1	2	1	1	1	3	2	3	3	3	3	2	1		3

Subject: MATLAB Lab	Subject Code: BMATS1-506	Semester: 5th
Credit: $\underline{1}$	LT P $\underline{002}$	Duration: 1 15Hrs.

| COs | Statement | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | Understand the main features of the MatLab development
 environment | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 3 |
| $\mathbf{C O 2}$ | Design simple algorithms to solve problems | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 3 |
| $\mathbf{C O 3}$ | Write simple programs in MaTLab to solve scientific and
 mathematical problems | 1 | 2 | 2 | 1 | 1 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 1 | 3 |
| $\mathbf{C O 4}$ | Understand the main features of the MATLAB/SCILAB
 program development environment. | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 2 |

Subject: LPP	Subject Code: BMATS1-601	Semester: $\underline{\text { 6th }}$
Credit: $\mathbf{4}$	LT P 3 1 0	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	Introduce and formulate linear programming models of real life situations.	1	2										1	1	1	
CO2	Understand the selection and implementation of graphical solution and variants of simplex method for the solution of LPP.		1		1	2	1	1			1	1	2	2	2	
CO3	Develop the relationships between the primal and dual problems and their solutions.				1	2						1	2	1		
CO4	Apply the knowledge to solve two-person zero-sum game problems	1	1			2	1	1				2	2	1	1	

Subject: Complex Analysis	Subject Code: BMATS1-602	Semester: $\underline{\mathbf{6}^{\text {th }}}$
Credit: $\underline{4}$	LT P 3 1 0	Duration: $\underline{\text { 60Hrs. }}$

| COs | Statement | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | Understand calculus of complex functions also
 concept and consequences of analyticity and Cauchy-
 Riemann equations . | 3 | 3 | 2 | 3 | 3 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 3 | 1 | |
| CO2 | Understanding Geometrical interpretation of Complex
 functions especially bilinear and conformal
 transformations. | 3 | 3 | 2 | 3 | 3 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 3 | 1 | |
| $\mathbf{C O 3}$ | Formulation of analytic functions and their
 applications. | 3 | 3 | 2 | 3 | 3 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 3 | 2 | |
| $\mathbf{C O 4}$ | Represent complex functions as Taylor, power and
 Laurent series, classification of singularities . | 3 | 3 | 2 | 3 | 3 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 3 | 3 | |

Subject: Mathematical Modelling	Subject Code: BMATS1-603	Semester: $\underline{6}^{\text {th }}$
Credit: $\underline{\mathbf{4}}$	LTP $\underline{\text { 3 1 0 }}$	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	Demo Understand the concept of several modelling techniques and analyze the resulting systems	1	1			3	1	2	3					3	1	
CO2	Analyse and construct mathematical models inspired by real life problems.	1	2		2	3	1	2	3					3	1	1
CO3	The use of mathematics software to observe the implementations of the above mentioned methods efficiently, and to enhance the problem solving skills.	2	3		2	2	2	1	2	3		2		3	2	1
CO4	Solve physical problems using differential equations.nstrate the steps of finite element methods in finding solution of Dynamic, Heat transfer, Solid Mechanic and Eigen value problems	1	2		1	2	1							3	2	

Subject: Discrete Mathematics	Subject Code: BMATS1-604	Semester: $\underline{\underline{6} \text { th }}$
Credit: $\underline{4}$	LT P 31 10	Duration: $\underline{60 \mathrm{Hrs} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Significant concepts of partial order relations, Recurrence relations, Boolean algebra, Lattices and Graph Theory.		1		2		3							3	2	2
CO2	To understand logical concepts and to show logical equivalences by using truth tables and rules in logics.				3	2				2		2		2	1	2
CO3	Appreciate the definition and basics of graphs along with types and their examples.				2		2					3		2	1	2
CO4	Understand the definition of a tree and learn its applications to fundamental circuits. Know the applications of graph theory to network flows. Relate the graph theory to the real-world problems.	1			1		2					2		2	1	2

Subject: Financial Mathematics	Subject Code: BMATS1-605	Semester: $\underline{\text { 6th }}$
Credit: $\underline{\text { 4 }}$	LTP $\underline{\mathbf{3 1 0}}$	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Quantitative analysis of financial transactions, understanding of different types of interest rates.	1		2	1		2		1			2		3	1	
CO2	Accumulated sum of annual annuity and of P-due annuity.		1	1		2		2			2			2	1	
CO3	Understand the concepts related to financial transactions yield.			2	2						1			2	1	
CO4	Analyze real investments with different yields.					2	3		2			2		2	1	

Enter Correction levels 1, 2 or 3 as defined below:

1. Slight (Low) - upto 30\%
 2. Moderate (Medium) -above 30\% andupto70\%

Enter Correction levels 1, 2 or 3 as defined below:

1. Slight (Low) - upto 30\%
2. Moderate (Medium) -above 30\% andupto70\%
3. Substantial (High) - above 70\%
4. Substantial (High) - above 70\%
