MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB), INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) \& 12 (B) of UGC; Member AIU)

Department:	DEPARTMENT OF MATHEMATICS
MRSPTU MAIN CAMPUS,BATHINDA	
Program: \quad M.Sc (2016)	

COs, POs, PSOs Mapping

Subject: Abstract Algebra	Subject Code: MMAT1-101	Semester: $\underline{\text { 1st }}$
Credit: $\underline{\mathbf{4}}$	LTP $\underline{\mathbf{4 0 0}}$	Duration: 45Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Analyze\& demonstrate different types of algebraic structures such as subgroups Normal subgroups, Quotient groups and Sylow theorems to solve different types of problems.	3	1			1	1			1				2	1	
CO2	Understand proofs of some results such as Fundamental theorem of arithmetic, Solvable groups to understand and use the fundamental results in Algebra. and Jordan -holder theorem.	1	2			2	1			2				2	1	
CO3	Understand the concept of Ring and subring, various type of ideals	2	2			2	2			2				2	1	1
CO4	Apply various concepts of factorization domains in real life problems	1	1			1	1			2				2	1	

Subject: Real Analysis	Subject Code: MMAT1-102	Semester: $\underline{1}^{\text {st }}$
Credit: $\underline{4}$	LT P 400	Duration: 45Hrs. 4

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Describe fundamental properties of the real numbers that lead to the formal development of real analysis.		2		3		1							2	1	2
CO2	Demonstrate an understanding of limits and how they are used in sequences, series, Construct rigorous mathematical proofs of basic results in real analysis.				2	2						2		2	1	2
CO3	Understand Integrability and theorems on integrability. Recognize the difference between point wise and uniform convergence of a sequence of functions.				2		2					3		2	1	2
CO4	Illustrate the effect of uniform convergence on the limit function with respect to continuity, differentiability, and integrability.	1			1							2		2	1	3

Subject: Mechanics	Subject Code: MMAT1-103	Semester: $1^{\text {st }}$
Credit: 4	LTP400	Duration: 45Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Use of the Lagrange's equation for deriving equation of motions		2			2	1	2		2				2	3	1
CO2	Understand necessary conditions for the equilibrium of particles acted upon by various forces and learn the principle of virtual work for a system of coplanar forces acting on a rigid body.		1		3					1	1					

CO3 Deal with the kinematics and kinetics of the rectilinear and planar motions of a particle including the constrained oscillatory motions of particles.

CO4 Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by Newton.

| | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Subject: Differential equations	Subject Code: MMAT1-104	Semester: $\mathbf{1}^{\text {st }}$
Credit: $\underline{\text { 4 }}$	LTP $\mathbf{4 0 0}$	Duration: 45Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the concept of existence and uniqueness of solutions and also emphasizes the justification of methods for approximating solutions in pure and applied mathematics	2	3			2	1			1		1		1	1	
CO2	Understand partial differential equations of various type, their classification and solution	2	2	1	2					2				2	1	
CO3	Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems	2	1		1									2	1	1
CO4	Discuss about autonomous system, Phase plane and critical points etc. continuity,	1	2				1	3						1		1

Subject: Fundamentals of Computer and C Programming	Subject Code: MCAP0-193	Semester: $\underline{1^{\text {st }}}$
Credit: $\underline{4}$	LT P $\underline{400}$	Duration: $\underline{\text { 45Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Implement programs using C.	1	1	1	1	1	1	2	2	3	3	3	2	1	1	2
CO2	Implement fundamental data structures in C .	1	1	1	1	2	2	2	3	3	3	3	2	1	2	2
CO3	Understand the fundamentals of hardware, software,	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2

	and programming.															
CO4	Understand the logic building used in Programming	1	1					2	2	2	2	3	3	3	3	2

Subject: Fundamentals of Computer and C Programming Lab	Subject Code: MCAP0-194	Semester: $\underline{\mathbf{1}^{\text {st }}}$
Credit: $\underline{\mathbf{1}}$	LTP P002	Duration: $\underline{\mathbf{6 0 H r s} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Implement programs using C.	1	1	1	1	1	1	2	2	3	3	3	2	1	1	2
CO2	Implement fundamental data structures in C.	1	1	1	1	2	2	2	3	3	3	3	2	1	2	2
CO3	Write the programming solutions for solving various real-life problems	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2
$\mathbf{C O 4}$	Implement Programs with pointers and arrays, perform pointer arithmetic, and use the pre-processor.	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2

Subject: Advanced Algebra	Subject Code: MMAT1-205	Semester: $\mathbf{2}^{\text {nd }}$
Credit: $\underline{4}$	LTP $\mathbf{4 0 0}$	Duration: $\underline{\text { 45Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.	3	1			1	1			1				2	1	
CO2	Prove the basic results of inner product space, field extensions, Finite fields and GaloisTheory.	1	2			2	1			2				2	1	1
CO3	Apply the concepts of Gauss Lemma, Einstein's irreducibility criterion, separable extensions etc.	2	2			2	2			2				2	1	1
CO4	Understand the logic building used in Programming	1	1			1	1			2					1	2

Subject: Measure Theory and Integration	Subject Code: MMAT1-206	Semester: $\underline{2}^{\text {nd }}$
Credit: $\underline{4}$	LT P $\underline{400}$	Duration: $\underline{\text { 45Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	Understand and implement the idea of Lebesgue Measure of Sets and Functions.		3				2	1						3		2
CO2	Document insight in modern theory of integration as a tool in advanced analysis and in statistics		2		2	1								3	1	1
CO3	Analyse the comparison of Riemann and lebesgue integral		1	2						2	2			2		1
CO4	Implement Lebesgue Integration and Lebesgue Differentiation, Fatou's Lemma \& Theory on LPSpace		2			3		1						2		1

Subject: Complex Analysis	Subject Code: MMAT1-207	Semester: $\underline{2}^{\text {nd }}$
Credit: 4	LTP400	Duration: 45Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the concept and consequences of analyticity and Cauchy-Riemann equations and knowing basic difference between real \& complex calculus and conformal mappings.		3		2			3	3		1			3	1	
CO2	Understanding Geometrical interpretation of Complex functions.	1	2	2	2	3		2						3	2	1
CO3	Evaluation of contour integrals directly by the use of Cauchy's theorem and Cauchy's integral formula.			2	1	3		2		3				3	1	1
CO4	Represent functions as Taylor, power and Laurent series, classify singularities and poles, find residue and complex integrals using residue theorem.		2			1				2				3	2	

Subject: Tensor and Differential Geometry	Subject Code: MMAT1-208	Semester: $\mathbf{2}^{\text {nd }}$
Credit: $\underline{4}$	LTP $\underline{\mathbf{4 0 0}}$	Duration: $\underline{\text { 45Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Explain the basic concepts of tensors, Understand role of tensors in differential geometry.		1			2					1			1	2	
CO2	Learn various properties of curves including Frenet-Serret formulae and their applications		2	3			2	1	1							
CO3	Know the Interpretation of the curvature tensor, Geodesic curvature, Gauss and Weingarten formulae		3				2	1					1		1	2

Subject: Numerical Analysis	Subject Code: MMAT1-209	Semester: $\underline{\text { 2 }}^{\text {nd }}$
Credit: $\underline{4}$	LT P 400	Duration: $\underline{\text { 45Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	To analyze different types of errors incumbent in any such numerical approximation.	1	1			1	1			1				1	2	
CO2	Introduce the basic concepts of Numerical Mathematics to solve the problems arising in science and engineering etc.	1	2			2	1			2				1	3	1
CO3	Compare the viability of different approaches to the numerical solution of problems arising in roots of solution of nonlinear equations, interpolation, numerical differentiation and integration	2	2		2	2	2			2				2	1	1
CO4	Apply numerical methods for solving different types	1	1		1	1	1			3				2	1	2

Subject: Numerical Analysis lab	Subject Code: MMAT1-210	Semester: $\underline{\mathbf{2}}^{\text {nd }}$
Credit: $\underline{1}$	LTPO02	Duration: $\underline{\text { 30Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Apply computer programming to solve algebraic equations, linear systems of equations, ordinary differential equation, eigenvalue problems \& Carry out numerical differentiation, integration and interpolation.		1			1	1	1		1	2			2	1	2
CO2	Utilize the symbolic tools of C++ language for solving given problem.		2			2	1	2		2	3			1	2	3
CO3	Understand different modes of a numerical method in order to solve a given problem efficiently.		2	2		2	2	3		2	1			1	2	2
CO4	Develop understanding of numerical error and applicability of a particular method		1	2		1	1	3		3	2			2		2

Subject: Topology	Subject Code: MMAT1-311	Semester: 3 $^{\text {rd }}$
Credit: $\underline{4}$	LT P $\underline{400}$	Duration: 45Hrs. 2

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Illustrate the concept of topological spaces and continuous functions, product topology and quotient topology.			1			2					2			1	1
CO2	Distinguish different examples of general, geometric and algebraic topology.			1	2		3	2			2			1	2	3

Subject: Operations research	Subject Code: MMAT1-312	Semester: $\mathbf{3}^{\text {rd }}$
Credit: $\underline{4}$	LTP400	Duration: $\mathbf{4 5 H r s}$.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Construct an optimization problem from its physical interpretation to get its solution by using a suitable optimization technique.		1	3			2							2	1	1
CO2	Implement an appropriate optimization technique to solve a particular optimization problem.		1	1			2		2		1			1	2	1
CO3	Apply the knowledge of basic optimization techniques to get the best possible results from a set of several possible solutions of transportation and assignment problems.						1		2		2			1	1	1
CO4	Use the ideas of basic optimization techniques to do interesting research work on such types of optimization techniques.					1		2			1			1	1	3

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	To understand the concept of probability theory and statistics to solve industrial problems and Demonstrate of application of all Distributions in various domain		1	1		2	1	1				1	1	1		1
CO2	Study the various discrete and continuous distributions	2	2	1	2				1	2	1			1		1
CO3	Understand the concept and derivation of Chi square ,t and z distributions with its standard errors, mean and variance with their random sampling from normal distributions.	1	2		1			1	1	2			1	1		1
CO4	Testing of hypothesis and its significance based on different distributions, transformation of correlation , regression and analysis of variance.	2	1		2	1	1		1	1				2		2

Subject: Mathematical Methods	Subject Code: MMAT1-314	Semester: $\underline{\text { 3 }}^{\text {rd }}$
Credit: $\underline{4}$	LTP $\underline{\text { 400 }}$	Duration: $\mathbf{4 5 \mathrm { Hrs } .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the concept of functional and importance of their applications.		3		1	2				2				3		1
CO2	Find stationary values or paths and use of EulerLagrange equations.		3			2				1				2	1	1
CO3	Understand the concept of integral equations and its types along with solutions by various methods.		2				1			3				2		2
CO4	Convert Differential equations into integral equations and vice versa.		2					2		2				2		2

Subject: Seminar-I	Subject Code: MMAT1-315	Semester: $\mathbf{3}^{\text {rd }}$
Credit: $\underline{1}$	LTP $\underline{\mathbf{0 0 2}}$	Duration: $\underline{\text { 30Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Inculcate confidence to communicate effectively through soft skills and presentations.			1						3		1	2			1
CO2	Enhance the subject enrichment through the detail study of the topic to be presented		2	1									1	2	1	1
CO3	Development of innovation and creativity through the selection and preparation of topic to be presented.		2	1						2			2			2
CO4	Develop the ethical skills and team work responsibilities through the discussion of preparation of the presentations.				1				3		3	2	2		2	

Subject: Fourier Analysis and Applications	Subject Code: MMAT1-356	Semester: $\mathbf{3}^{\text {rd }}$
Credit: $\underline{\text { 4 }}$	LT P 4 $\mathbf{0 0}$	Duration: $\mathbf{4 5 H r s}$.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Concept of Fourier series and its importance in various fields		3			2	1	2		2				3	1	1
CO2	Understand the basic concepts of Fourier analysis.		2		3					1	1			3	2	1
CO3	Understand the use of Fourier transforms and its applications to Boundary Value problems	2				3	2							3	2	
CO4	Able to have knowledge about Discrete Fourier transforms Fast Fourier transforms and their use in technology		2		2	2								2	2	

Subject: Advanced Numerical Analysis	Subject Code: MMAT1-357	Semester: 3 $^{\text {rd }}$
Credit: $\mathbf{4}$	LT P 400	Duration: 45Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Find numerical solutions of system of linear equations and check the accuracy of the solutions.		2			3	1	1		2				2	2	3
CO2	Compare the viability of different approaches to the numerical solution of problems arising in roots of solution of nonlinear equations, Finite difference methods		2		3					1	1			2	1	3
CO3	Solve initial and boundary value problems in differential equations using numerical methods.					1	3							2	1	2
CO4	Apply various numerical methods in real life problems like finite element method.		2		2	1				2				2	2	2

Subject: Number Theory	Subject Code: MMAT1-416	Semester: 4 $^{\text {th }}$
Credit: $\underline{4}$	LT P $\underline{\mathbf{4 0 0}}$	Duration: $\underline{\text { 45Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Define divisibility, greatest common divisor, Prime numbers, congruence,					1	2								2	
CO2	Understand the concept of Mobius function $\mu(\mathrm{n})$, The Euler totient function $\varphi(\mathrm{n})$, Mangolt function Λ (n), Liouvilles function, The divisor function and primefactorization.		2	1			2	1								
CO3	Derive Euler Summation formula, Dirichlet inversion formula, Mobius inversion formula.		2				1	3								2
CO4	Familiar with elementary theorems on Distribution of prime numbers,Dirichlet character.			1		1	2	2						2		2

Subject: Functional Analysis	Subject Code: MMAT1-417	Semester: 4 $^{\text {th }}$
Credit: $\underline{4}$	LT P $\underline{400}$	Duration: 45Hrs. 4

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Analyze the basic idea of finite dimensional normed spaces and subspaces and also to identify selfadjoint transformations	1		2	2	3					2			2	1	3
CO2	Apply the spectral theorem and orthogonal decomposition of inner product spaces, the Jordan canonical form to solving systems of ordinary differential equations			1	2	2	3	2			2			2	1	3
CO3	This course covers major theorems of Functional Analysis that have applications in Ordinary and Partial Differential Equations. Review of linear spaces and their norms. The Hahn-Banach, Baire Category, Uniform Boundedness Principle, Open Mapping and Closed Graph theorems.			2	1	2	3							2	1	2
CO4	Apply various methods in real life problems	1			2		2	3			3	2		2	1	2

Subject: Partial Differential Equations	Subject Code: MMAT1-418	Semester: 4 $^{\text {th }}$
Credit: $\mathbf{4}$	LTP $\mathbf{4 0 0}$	Duration: 45Hrs.

| COs | Statement | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | Apply a range of techniques to solve first \& second
 order partial differential equations. | | | 1 | 2 | 3 | | | | | 2 | | | 2 | 2 | 2 |
| CO2 | Model physical phenomena using partial differential
 equations such as the heat and wave equations. | | | 1 | 2 | 2 | 3 | 2 | | | 2 | | | 2 | 2 | 3 |
| CO3 | Recognize the major classification of PDEs and the | | | 1 | | 2 | 3 | | | | | | | 2 | 1 | 2 |

	qualitative differences between the classes of equations.														
CO4	Formulate mathematical models in the form of ordinary and partial differential equations to problems arising in physical, chemical and biological disciplines.	1			2		2	3			3	2		2	2

Subject: Seminar-II	Subject Code: MMAT1-419	Semester: $\mathbf{\text { 4th }}$
Credit: $\underline{\mathbf{1}}$	LTP $\underline{\mathbf{0 0 2}}$	Duration: $\mathbf{3 0 \mathrm { Hrs } .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Inculcate confidence to communicate effectively through soft skills and presentations.			1						3		1	2			1
$\mathbf{C O 2}$	Enhance the subject enrichment through the detail study of the topic to be presented.		2	1										2	1	1
$\mathbf{C O 3}$	Development of innovation and creativity through the selection and preparation of topic to be presented.		2	1						2			2			2
$\mathbf{C O 4}$	Develop the ethical skills and team work responsibilities through the discussion of preparation of the presentations.				1				3		3	2	2		2	

Subject: Advanced Operations Research	Subject Code: MMAT1-458	Semester: $\mathbf{\text { 4th }}$
Credit: $\mathbf{4}$	LTP $\mathbf{4 0 0}$	Duration: $\mathbf{\text { 45Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Formulate mathematical models involving Queuing theory and inventory problems from its physical considerations.		1	3										1	1	1

Subject: Advanced Complex Analysis	Subject Code: MMAT1-459	Semester: 4 $^{\text {th }}$
Credit: $\underline{\mathbf{4}}$	LT P $\underline{\mathbf{4 0 0}}$	Duration: 45Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Manipulate complex numbers in various representations.	2	3			1		2						3	2	
CO2	Define and calculate limits and derivatives of functions of a complex variable. State and prove fundamental results, including: Cauchy's Theorem and Cauchy's Integral Formula		3		2		2	2		2				2	1	
CO3	Understanding Geometrical interpretation of Complex functions		2			3	1	2						2	1	
CO4	Understand Fundamental Theorem of Algebra, Morera's Theorem and Liouville's Theorem and use them to prove related results.		2			3	1	2						2	2	

Subject: Fractional Calculus	Subject Code: MMAT1-460	Semester: $\underline{4}^{\text {th }}$
Credit: $\underline{4}$	LTP $\underline{\mathbf{4 0 0}}$	Duration: $\mathbf{4 5 \mathrm { Hrs } .}$

COs	Statement	P01	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	Apply the knowledge to evaluate fractional integrals of some common functions by understanding the Riemann-Liouville fractional integral	2	2					2			1			1	1	1
CO2	Define the Leibniz's formula of fractional derivatives and find the fractional derivatives of some common functions	2	2					1						1		1
CO3	Develop the skills to solve the linear fractional differential equations using the Laplace transform.	2	1				2	2	1		2			1		1
CO4	Introduce the Leibniz formula for Weyl fractional integral and investigate some applications of the fractional calculus to the real world.		2				1	2	2		2			1	1	1

Subject: Graph Theory	Subject Code: MMAT1-461	Semester: 4 $^{\text {th }}$
Credit: $\underline{4}$	LT P $\underline{400}$	Duration: 45Hrs. 4

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Define the basic concept of graphs, its types and properties		2	3						2				3		
CO2	Define the properties of trees, and to understand the concept of colouring and theory	3	1							2				2	2	1
CO3	Understand Eulerian and Hamiltonian graphs with results.		2	3		2				1				1		2
CO4	Understand the connectivity and paths, edges and cycles.	2	3			3			1				2		2	

Subject: Sampling Distribution and Estimation Theory	Subject Code: MMAT1-462	Semester: $\underline{\mathbf{4}^{\text {th }}}$
Credit: $\underline{4}$	LTP $\mathbf{4 0 0}$	Duration: $\underline{\text { 45Hrs. }}$

COs	Statement	P01	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the idea of Sampling and its types, to know the concept of Estimation Theory, Distributions and Sampling Tests- F- Test, Chi square test.				2	1	2		1					1		
CO2	Understand problem of statistical inference, problem of point estimation, Properties of point estimator such Consistency, Unbiasedness, Sufficiency		2	1	1		2									
CO3	Obtain minimum variance unbiased estimator.		2	1	1		2									2
CO4	Obtain estimators using estimation methods such as Maximum likelihood\& its properties, Minimum chi square, method of moments, method of scoring.				2	1		1	1	3				2		2

Subject: Fuzzy Set Theory and Applications	Subject Code: MMAT1-463	Semester: 4th
Credit: $\underline{4}$	LTP $\mathbf{4 0 0}$	Duration: $\mathbf{4 5 H r s}$.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Identify fuzzy sets and perform set operations.		2		2	2				1	1			3		1
CO2	Classify the various operations on fuzzy sets	1	3			2				1	1			2		1
CO3	Apply fuzzy logic in various real life situations.		2			3					1			1		2
			2								1					
CO4	Decide the difference between crisps and fuzzy set theory.		2			1	1							2		2

Subject: Computer Application in Business	Subject Code: MCAP0-F91	Semester: 4 $^{\text {th }}$
Credit: $\underline{\mathbf{3}}$	LTP $\mathbf{3 0 0}$	Duration: $\underline{\text { 40Hrs. }}$

| COs | Statement | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | Describe the fundamentals of Information Technology
 (IT) infrastructure components: hardware, software,
 and data communications systems. | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 2 | | 2 | 2 |
| CO2 | Identify emerging technologies for use in business
 applications. | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 2 | 2 |
| $\mathbf{C O 3}$ | Demonstrate basic skills involving spreadsheet
 functions; create formulas, charts, and graphs;
 manipulate data; and generate reports | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | | 2 | 2 |
| CO4 | Gain an education for office careers by focusing on
 developing communication skills as well as skills in
 office technology systems. | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 2 | 2 |

Subject: Business Ethics	Subject Code: MBAD0-F97	Semester: 4 $^{\text {th }}$
Credit: $\underline{\mathbf{3}}$	LT P 3 0 0 0	Duration: 40Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand role the ethics and values in Business.								3				1		1	
CO2	Understand role the ethics in functioning of various departments of organization like Marketing, Finance \& HR.									1				2	1	
CO3	Analyze the ethics in society and Business.					1	1	1	2							
CO4	Implement Individual \& Group policies and laws of ethics.								2		1	2				

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB), INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) \& 12 (B) of UGC; Member AIU)

Department:	DEPARTMENT OF MATHEMATICS
MRSPTU MAIN CAMPUS,BATHINDA	
Program: \quad M.Sc (2019)	

COs, POs, PSOs Mapping

Subject: Abstract Algebra	Subject Code: MMAT1-101	Semester: $\mathbf{1 s t}$
Credit: $\underline{4}$	LT P $\underline{400}$	Duration: 60 Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Analyze\& demonstrate different types of algebraic structures such as subgroups Normal subgroups, Quotient groups and Sylow theorems to solve different types of problems.	3	1			1	1			1				2	1	
CO2	Understand proofs of some results such as Fundamental theorem of arithmetic, Solvable groups to understand and use the fundamental results in Algebra. and Jordan -holder theorem.	1	2			2	1			2				2	1	
CO3	Understand the concept of Ring and subring, various type of ideals	2	2			2	2			2				2	1	1
CO4	Apply various concepts of factorization domains in real life problems	1	1			1	1			2				2	1	

Subject: Real Analysis	Subject Code: MMAT1-102	Semester: $\underline{1}^{\text {st }}$
Credit: $\underline{4}$	LT P 400	Duration: $60 \mathrm{Hrs}$.

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Describe fundamental properties of the real numbers that lead to the formal development of real analysis.		2		3		1							2	1	2
CO2	Demonstrate an understanding of limits and how they are used in sequences, series, Construct rigorous mathematical proofs of basic results in real analysis.				2	2						2		2	1	2
CO3	Understand Integrability and theorems on integrability. Recognize the difference between point wise and uniform convergence of a sequence of functions.				2		2					3		2	1	2
CO4	Illustrate the effect of uniform convergence on the limit function with respect to continuity, differentiability, and integrability.	1			1							2		2	1	3

Subject: Mechanics	Subject Code: MMAT1-103	Semester: $\mathbf{1}^{\text {st }}$
Credit: $\underline{4}$	LTP400	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Use of the Lagrange's equation for deriving equation of motions		2			2	1	2		2				2	3	1
CO2	Understand necessary conditions for the equilibrium of particles acted upon by various forces and learn the principle of virtual work for a system of coplanar forces acting on a rigid body.		1		3					1	1					

CO3 Deal with the kinematics and kinetics of the rectilinear and planar motions of a particle including the constrained oscillatory motions of particles.

CO4 Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by Newton.

| | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Subject: Differential equations	Subject Code: MMAT1-104	Semester: $\mathbf{1}^{\text {st }}$
Credit: $\underline{4}$	LTP $\mathbf{4 0 0}$	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the concept of existence and uniqueness of solutions and also emphasizes the justification of methods for approximating solutions in pure and applied mathematics	2	3			2	1			1		1		1	1	
CO2	Understand partial differential equations of various type, their classification and solution	2	2	1	2					2				2	1	
CO3	Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems	2	1		1									2	1	1
CO4	Discuss about autonomous system, Phase plane and critical points etc. continuity,	1	2				1	3						1		1

Subject: Fundamentals of Computer and C Programming	Subject Code: MCAP0-193	Semester: $\underline{1^{\text {st }}}$
Credit: $\underline{4}$	LT P 4 $\underline{00}$	Duration: $\underline{60 \mathrm{Hrs} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Implement programs using C.	1	1	1	1	1	1	2	2	3	3	3	2	1	1	2
CO2	Implement fundamental data structures in C .	1	1	1	1	2	2	2	3	3	3	3	2	1	2	2
CO3	Understand the fundamentals of hardware, software,	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2

	and programming.															
CO4	Understand the logic building used in Programming	1	1					2	2	2	2	3	3	3	3	2

Subject: Fundamentals of Computer and C Programming Lab	Subject Code: MCAP0-194	Semester: $\underline{\mathbf{1}}^{\text {st }}$
Credit: $\underline{\mathbf{1}}$	LTP $\underline{\mathbf{0 0 2}}$	Duration: $\mathbf{\text { 30Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Implement programs using C.	1	1	1	1	1	1	2	2	3	3	3	2	1	1	2
CO2	Implement fundamental data structures in C.	1	1	1	1	2	2	2	3	3	3	3	2	1	2	2
CO3	Write the programming solutions for solving various real-life problems	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2
$\mathbf{C O 4}$	Implement Programs with pointers and arrays, perform pointer arithmetic, and use the pre-processor.	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2

Subject: Advanced Algebra	Subject Code: MMAT1-205	Semester: $\mathbf{2}^{\text {nd }}$
Credit: $\underline{4}$	LTP $\mathbf{4 0 0}$	Duration: $\underline{\mathbf{0 0 H r} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.	3	1			1	1			1				2	1	
CO2	Prove the basic results of inner product space, field extensions, Finite fields and GaloisTheory.	1	2			2	1			2				2	1	1
CO3	Apply the concepts of Gauss Lemma, Einstein's irreducibility criterion, separable extensions etc.	2	2			2	2			2				2	1	1
CO4	Understand the logic building used in Programming	1	1			1	1			2					1	2

Subject: Measure Theory and Integration	Subject Code: MMAT1-206	Semester: $\underline{2}^{\text {nd }}$
Credit: $\underline{4}$	LT P $\underline{400}$	Duration: $\underline{\mathbf{0 0 H r s} .}$

COs	Statement	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	Understand and implement the idea of Lebesgue Measure of Sets and Functions.		3				2	1						3		2
CO2	Document insight in modern theory of integration as a tool in advanced analysis and in statistics		2		2	1								3	1	1
CO3	Analyse the comparison of Riemann and lebesgue integral		1	2						2	2			2		1
CO4	Implement Lebesgue Integration and Lebesgue Differentiation, Fatou's Lemma \& Theory on LPSpace		2			3		1						2		1

Subject: Complex Analysis	Subject Code: MMAT1-207	Semester: $\underline{2}^{\text {nd }}$
Credit: $\underline{4}$	LTP $\underline{\mathbf{4 0 0}}$	Duration: $\underline{\mathbf{6 0 H r s} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the concept and consequences of analyticity and Cauchy-Riemann equations and knowing basic difference between real \& complex calculus and conformal mappings.		3		2			3	3		1			3	1	
CO2	Understanding Geometrical interpretation of Complex functions.	1	2	2	2	3		2						3	2	1
CO3	Evaluation of contour integrals directly by the use of Cauchy's theorem and Cauchy's integral formula.			2	1	3		2		3				3	1	1
CO4	Represent functions as Taylor, power and Laurent series, classify singularities and poles, find residue and complex integrals using residue theorem.		2			1				2				3	2	

Subject: Tensor and Differential Geometry	Subject Code: MMAT1-208	Semester: $\mathbf{2}^{\text {nd }}$
Credit: $\underline{4}$	LTP $\underline{\mathbf{4 0 0}}$	Duration: $\underline{\text { 0Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Explain the basic concepts of tensors, Understand role of tensors in differential geometry.		1			2					1			1	2	
CO2	Learn various properties of curves including Frenet-Serret formulae and their applications		2	3			2	1	1					2	1	
CO3	Know the Interpretation of the curvature tensor, Geodesic curvature, Gauss and Weingarten formulae		3				2	1						1	2	1
CO4	Explain the concepts of differential geometry and its role in modern Mathematics		3	2			2	2			1			2	1	1

Subject: Numerical Analysis	Subject Code: MMAT1-209	Semester: $\mathbf{2}^{\text {nd }}$
Credit: $\underline{4}$	LTP400	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	To analyze different types of errors incumbent in any such numerical approximation.	1	1			1	1			1				1	2	
CO2	Introduce the basic concepts of Numerical Mathematics to solve the problems arising in science and engineering etc.	1	2			2	1			2				1	3	1
CO3	Compare the viability of different approaches to the numerical solution of problems arising in roots of solution of nonlinear equations, interpolation,	2	2		2	2	2			2				2	1	1

Subject: Numerical Analysis lab	Subject Code: MMAT1-210	Semester: $\underline{\text { 2nd }}^{\text {nd }}$
Credit: $\underline{\mathbf{1}}$	LTP $\underline{\mathbf{0 0 2}}$	Duration: $\underline{\mathbf{3 0 H r} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Apply computer programming to solve algebraic equations, linear systems of equations, ordinary differential equation, eigenvalue problems \& Carry out numerical differentiation, integration and interpolation.		1													
CO2	Utilize the symbolic tools of C++ language for solving given problem.		2			2	1	1	2							

Subject: Topology	Subject Code: MMAT1-311	Semester: $\mathbf{3}^{\text {rd }}$
Credit: $\underline{4}$	LTP $\underline{\mathbf{4 0 0} 0}$	Duration: $\underline{60 \mathrm{Hrs} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Illustrate the concept of topological spaces and continuous functions, product topology and quotient topology.		1			2					2			1	1	3

CO2	Distinguish different examples of general, geometric and algebraic topology.		1	2		3	2	2		1	2	3
CO3	Understand several standard concepts of metric spaces and their properties like openness, closeness, completeness, compactness, and connectedness.		1		2	3				2	2	3
CO4	Identify the continuity of a function defined on metric spaces and homeomorphisms.	1		2		2		2	2	2	2	3

Subject: Operations research	Subject Code: MMAT1-312	Semester: $\underline{3}^{\text {rd }}$
Credit: $\underline{4}$	LTP $\underline{\mathbf{4 0 0}}$	Duration: $\underline{\mathbf{6 0 H r s} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Construct an optimization problem from its physical interpretation to get its solution by using a suitable optimization technique.		1	3			2							2	1	1
CO2	Implement an appropriate optimization technique to solve a particular optimization problem.		1	1			2		2		1			1	2	1
CO3	Apply the knowledge of basic optimization techniques to get the best possible results from a set of several possible solutions of transportation and assignment problems.						1		2		2			1	1	1
CO4	Use the ideas of basic optimization techniques to do interesting research work on such types of optimization techniques.					1		2			1			1	1	3

Subject: Mathematical Statistics	Subject Code: MMAT1-313	Semester: $\underline{\text { rrd }}^{\text {r. }}$
Credit: $\underline{\mathbf{4}}$	LTP $\underline{\mathbf{4 0 0}}$	Duration: $\underline{\text { 0Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	To understand the concept of probability theory and statistics to solve industrial problems and Demonstrate of application of all Distributions in various domain		1	1		2	1	1					1	1		
CO2	Study the various discrete and continuous distributions	2	2	1	2				1	2	1					1
CO3	Understand the concept and derivation of Chi square ,t and z distributions with its standard errors, mean and variance with their random sampling from normal distributions.	1	2		1			1	1	2			1	1	1	1
CO4	Testing of hypothesis and its significance based on different distributions, transformation of correlation , regression and analysis of variance.	2	1		2	1	1		1	1						

Subject: Mathematical Methods	Subject Code: MMAT1-314	Semester: $\mathbf{3}^{\text {rd }}$
Credit: $\underline{4}$	LT P $\mathbf{4 0 0}$	Duration: $\underline{60 \mathrm{Hrs} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the concept of functional and importance of their applications.		3		1	2				2				3		1
$\mathbf{C O 2}$	Find stationary values or paths and use of Euler- Lagrange equations.		3			2				1				2	1	1
$\mathbf{C O 3}$	Understand the concept of integral equations and its types along with solutions by various methods.		2				1			3				2		2
$\mathbf{C O 4}$	Convert Differential equations into integral equations and vice versa.	2					2		2				2		2	

Subject: Seminar-I	Subject Code: MMAT1-315	Semester: 3 $^{\text {rd }}$
Credit: $\underline{1}$	LTP $\mathbf{0 0 2}$	Duration: $\underline{\text { 30Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Inculcate confidence to communicate effectively through soft skills and presentations.			1						3		1	2			1
CO2	Enhance the subject enrichment through the detail study of the topic to be presented		2	1									1	2	1	1
CO3	Development of innovation and creativity through the selection and preparation of topic to be presented.		2	1						2			2			2
CO4	Develop the ethical skills and team work responsibilities through the discussion of preparation of the presentations.				1				3		3	2	2		2	

Subject: Fourier Analysis and Applications	Subject Code: MMAT1-356	Semester: $\mathbf{3}^{\text {rd }}$
Credit: $\mathbf{4}$	LTP $\mathbf{4 0 0}$	Duration: $\underline{\text { 00Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Concept of Fourier series and its importance in various fields		3			2	1	2		2					1	1
CO2	Understand the basic concepts of Fourier analysis.		2		3					1	1			3	2	1
CO3	Understand the use of Fourier transforms and its applications to Boundary Value problems	2				3	2							3	2	
CO4	Able to have knowledge about Discrete Fourier transforms Fast Fourier transforms and their use in technology		2		2	2								2	2	

Subject: Advanced Numerical Analysis	Subject Code: MMAT1-357	Semester: $\underline{3}^{\text {rd }}$
Credit: $\underline{4}$	LT P $\underline{\mathbf{4 0 0}}$	Duration: $\underline{\mathbf{0 0 H r s} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Find numerical solutions of system of linear equations and check the accuracy of the solutions.		2			3	1	1		2					2	2
$\mathbf{C O 2}$	Compare the viability of different approaches to the numerical solution of problems arising in roots of solution of nonlinear equations, Finite difference methods		2		3					1	1					
$\mathbf{C O 3}$	Solve initial and boundary value problems in differential equations using numerical methods.				1	3							2	1	2	
$\mathbf{C O 4}$	Apply various numerical methods in real life problems like finite element method.	2		2	1				2				2	2	2	

Subject: Number Theory	Subject Code: MMAT1-416	Semester: 4 $^{\text {th }}$
Credit: $\underline{4}$	LT P $\underline{\mathbf{4 0 0}}$	Duration: $\underline{\mathbf{6 0 H r s} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Define divisibility, greatest common divisor, Prime numbers, congruence,					1	2								2	
CO2	Understand the concept of Mobius function $\mu(\mathrm{n})$, The Euler totient function $\varphi(\mathrm{n})$, Mangolt function Λ (n), Liouvilles function, The divisor function and primefactorization.		2	1			2	1								
CO3	Derive Euler Summation formula, Dirichlet inversion formula, Mobius inversion formula.		2				1	3								2
CO4	Familiar with elementary theorems on Distribution of prime numbers,Dirichlet character.			1		1	2	2						2		2

Subject: Functional Analysis	Subject Code: MMAT1-417	Semester: 4 $^{\text {th }}$
Credit: $\underline{4}$	LT P $\underline{400}$	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Analyze the basic idea of finite dimensional normed spaces and subspaces and also to identify selfadjoint transformations	1		2	2	3					2			2	1	3
CO2	Apply the spectral theorem and orthogonal decomposition of inner product spaces, the Jordan canonical form to solving systems of ordinary differential equations			1	2	2	3	2			2			2	1	3
CO3	This course covers major theorems of Functional Analysis that have applications in Ordinary and Partial Differential Equations. Review of linear spaces and their norms. The Hahn-Banach, Baire Category, Uniform Boundedness Principle, Open Mapping and Closed Graph theorems.			2	1	2	3							2	1	2
CO4	Apply various methods in real life problems	1			2		2	3			3	2		2	1	2

Subject: Partial Differential Equations	Subject Code: MMAT1-418	Semester: $\mathbf{4}^{\text {th }}$
Credit: $\mathbf{4}$	LTP $\mathbf{4 0 0}$	Duration: $\underline{\text { 0 }}$ Hrs.

| COs | Statement | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | Apply a range of techniques to solve first \& second
 order partial differential equations. | | | 1 | 2 | 3 | | | | | 2 | | | 2 | 2 | 2 |
| CO2 | Model physical phenomena using partial differential
 equations such as the heat and wave equations. | | | 1 | 2 | 2 | 3 | 2 | | | 2 | | | 2 | 2 | 3 |
| CO3 | Recognize the major classification of PDEs and the | | | 1 | | 2 | 3 | | | | | | | 2 | 1 | 2 |

	qualitative differences between the classes of equations.														
CO4	Formulate mathematical models in the form of ordinary and partial differential equations to problems arising in physical, chemical and biological disciplines.	1			2		2	3			3	2		2	2

Subject: Seminar-II	Subject Code: MMAT1-419	Semester: $\mathbf{\text { 4th }}$
Credit: $\underline{\mathbf{1}}$	LTP $\underline{\mathbf{0 0 2}}$	Duration: $\mathbf{3 0 \mathrm { Hrs } .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Inculcate confidence to communicate effectively through soft skills and presentations.			1						3		1	2			1
$\mathbf{C O 2}$	Enhance the subject enrichment through the detail study of the topic to be presented.		2	1										2	1	1
$\mathbf{C O 3}$	Development of innovation and creativity through the selection and preparation of topic to be presented.		2	1						2			2			2
$\mathbf{C O 4}$	Develop the ethical skills and team work responsibilities through the discussion of preparation of the presentations.				1				3		3	2	2		2	

Subject: Advanced Operations Research	Subject Code: MMAT1-458	Semester: $\mathbf{4 \text { th }}$
Credit: $\mathbf{4}$	LTP $\mathbf{4 0 0}$	Duration: $\mathbf{6 0 \mathrm { Hrs } .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Formulate mathematical models involving Queuing theory and inventory problems from its physical considerations.		1	3										1	1	1

Subject: Advanced Complex Analysis	Subject Code: MMAT1-459	Semester: $\mathbf{4}^{\text {th }}$
Credit: $\underline{\mathbf{4}}$	LT P $\underline{\mathbf{4 0 0}}$	Duration: $\underline{\mathbf{0 0 H r s} .}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Manipulate complex numbers in various representations.	2	3			1		2						3	2	
CO2	Define and calculate limits and derivatives of functions of a complex variable. State and prove fundamental results, including: Cauchy's Theorem and Cauchy's Integral Formula		3		2		2	2		2				2	1	
CO3	Understanding Geometrical interpretation of Complex functions		2			3	1	2						2	1	
CO4	Understand Fundamental Theorem of Algebra, Morera's Theorem and Liouville's Theorem and use them to prove related results.		2			3	1	2						2	2	

Subject: Fractional Calculus	Subject Code: MMAT1-460	Semester: $\underline{4}^{\text {th }}$
Credit: $\underline{\mathbf{4}}$	LTP $\underline{\mathbf{4 0 0} \mathbf{0}}$	Duration: $\underline{\text { 0Hrs. }}$

COs	Statement	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
C01	Apply the knowledge to evaluate fractional integrals of some common functions by understanding the Riemann-Liouville fractional integral	2	2					2			1			1	1	1
CO2	Define the Leibniz's formula of fractional derivatives and find the fractional derivatives of some common functions	2	2					1						1		1
CO3	Develop the skills to solve the linear fractional differential equations using the Laplace transform.	2	1				2	2	1		2			1		1
CO4	Introduce the Leibniz formula for Weyl fractional integral and investigate some applications of the fractional calculus to the real world.		2				1	2	2		2			1	1	1

Subject: Graph Theory	Subject Code: MMAT1-461	Semester: 4 $^{\text {th }}$
Credit: $\underline{4}$	LTP $\underline{400}$	Duration: 60 Hrs.

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Define the basic concept of graphs, its types and properties		2	3						2				3		
CO2	Define the properties of trees, and to understand the concept of colouring and theory	3	1							2				2	2	1
CO3	Understand Eulerian and Hamiltonian graphs with results.		2	3		2				1				1		2
CO4	Understand the connectivity and paths, edges and cycles.	2	3			3			1				2		2	

Subject: Sampling Distribution and Estimation Theory	Subject Code: MMAT1-462	Semester: $\underline{4}^{\text {th }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the idea of Sampling and its types, to know the concept of Estimation Theory, Distributions and Sampling Tests- F- Test, Chi square test.				2	1	2		1							
CO2	Understand problem of statistical inference, problem of point estimation, Properties of point estimator such Consistency, Unbiasedness, Sufficiency		2	1	1		2									
CO3	Obtain minimum variance unbiased estimator.		2	1	1		2									
CO4	Obtain estimators using estimation methods such as Maximum likelihood\& its properties, Minimum chi square, method of moments, method of scoring.				2	1		1	1	3				2		2

Subject: Fuzzy Set Theory and Applications	Subject Code: MMAT1-463	Semester: $\mathbf{\text { 4th }}$
Credit: $\mathbf{4}$	LTP $\mathbf{4 0 0}$	Duration: $\underline{\text { 60Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Identify fuzzy sets and perform set operations.		2		2	2				1	1			3		1
CO2	Classify the various operations on fuzzy sets	1	3			2				1	1			2		1
CO3	Apply fuzzy logic in various real life situations.		2			3					1			1		2
			2								1					
CO4	Decide the difference between crisps and fuzzy set theory.		2			1	1							2		2

Subject: Computer Application in Business	Subject Code: MCAP0-F91	Semester: $4^{\text {th }}$
Credit: $\mathbf{3}$	LTP $\mathbf{3 0 0}$	Duration: 40 Hrs .

| COs | Statement | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | Describe the fundamentals of Information Technology
 (IT) infrastructure components: hardware, software,
 and data communications systems. | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 2 | | | |
| CO2 | Identify emerging technologies for use in business
 applications. | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 2 | 2 |
| CO3 | Demonstrate basic skills involving spreadsheet
 functions; create formulas, charts, and graphs;
 manipulate data; and generate reports | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | | 2 | 2 |
| CO4 | Gain an education for office careers by focusing on
 developing communcation skills as well as skills in
 office technology systems. | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 2 | 2 |

Subject: Business Ethics	Subject Code: MBAD0-F97	Semester: $\underline{4}^{\text {th }}$
Credit: $\underline{\mathbf{3}}$	LT P 3 0 0 0	Duration: $\underline{\text { 40Hrs. }}$

COs	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand role the ethics and values in Business.								3				1		1	
CO2	Understand role the ethics in functioning of various departments of organization like Marketing, Finance \& HR.									1				2	1	
CO3	Analyze the ethics in society and Business.					1	1	1	2							
CO4	Implement Individual \& Group policies and laws of ethics.								2		1	2				

Enter Correction levels 1, 2 or 3 as defined below:

