

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) & 12 (B) of UGC; Member AIU) Bathinda-151001 (Punjab), India

Department: **DEPARTMENT OF MATHEMATICS**

MRSPTU MAIN CAMPUS, BATHINDA

Program: B.SC (HONS) (2018)

Subject	S Code	Semester	Credit	Duration (Hrs)	LTP	Cos	Statement	P01	PO2	PO3	PO4	POS	P06	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
l-suli	71-101	•	-	5	. 0	CO1	Apply the knowledge of basic concepts of calculus in order to study theoretical development of different mathematical techniques and their applications.	2	1		3	2	1	2			2	1	1	2	2	
Calculus-I	BMAT1.	1	5	5	41	CO2	Develop the skills to sketch the curves in a plane using its mathematical properties in the different coordinate systems of reference.	1	3		2		1							1	1	

						03	Apply derivatives for the computation of directional derivative and Optimization.	2	1	1	1	1	2		1	1	1	2	2	
						CO4	Extend the knowledge of Partial derivatives of higher order for further exploration of the subject for going into higher education	2	1	1			2					2	2	
						CO1	Understand the basic concepts of linear transformations, the Rank-Nullity Theorem, matrix of a linear transformation, algebra of transformations and the change of basis.	3		2			1			1		1	2	
Algebra-I	BMAT1-102	1	5	5 5	410	CO2	Analyze& solve problems related to Matrices, Quotient space, Homomorphism & Isomorphism of vector space and Null space etc.	1		2	2			2		1		2	1	
	E					03	Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix, using rank.	1		2	2					1		1	2	
						C04	Find eigenvalues and corresponding eigenvectors for a square matrix	1		2	2			2				1	2	
Analysis-I	BMAT1-103	1	5	5 5	4 1 0	CO1	Understand many properties of the real line \mathbb{R} , including completeness and Archimedean properties			3				2		3		3	3	

						C02	Apply the ratio, root, and alternating series and limit comparison tests for convergence and absolute convergence of an infinite series of real numbers.					1	1		3			3		3	2	
						603	Understand the concept of continuous functions, uniform continuity and discontinuity				1				2			2		3	3	
						CO4	Apply mean value theorem, Taylor's theorem					3	1					1		3	3	
mming	01					CO1	Operating Systems, Linux, Windows and other Operating Systems, Open Source Foundation and GNU		1			1	1	1		1	2	1	1	1	2	3
Fortran Programming	BCAP1-101	1	4	4 5	400	CO2	Programming and Problem Solving, Basic FORTRAN, Control Constructs.	1	2	1		2		1	2	2	2	2	2	1	2	3
Fort						603	Skills for writing computational programs.	1	2	1	1		2			1	3	3	3	1	2	3
						C04	Different numerical techniques utilized in programming.		1	1	1	1	2		1	2	3	3	3	1	2	3
Fortran Programming lab	BCAP1-102	1	1	30	002	CO1	Use operating Systems, Linux, Windows and other Operating Systems, Open- Source Foundation and GNU	1	1	1	1	1	1	2	2	3	3	3	2	1	2	3

						CO2	Use Programming and Problem Solving, Basic FORTRAN, Control Constructs.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
						603	Design and code mid-level problems.	1	2	1	1	2	3	2	3	3	3	3	2	1	2	3
						CO4	Understand basic programming concepts Isomorphism of vector space and Null space etc.	2	2	1	1	2	3	2	3	3	3	3	2	1	2	3
		1	4	55		CO1	To know about the various dimensions of communication skills and to understand its importance	1	1	1	1	1	1	2	2	3	3	3	2	2		
English	BHUM1-101				400	CO2	To comprehend the role of communication at different levels (verbal, non-verbal, official, and non-official).	1	2	1	1	2	2	2	3	3	3	3	2	2	2	
	BHI					603	To know about the intricacies of written communication for office use.	1	2	1	1	1	3	2	3	3	3	3	2			3
						CO4	To make pupil prepare for presenting him/herself in interviews, GD etc.	1	2	1	1	1	3	2	3	3	3	3	2	2	2	2
Calculus-II	BMAT1-204	2	5	55	410	001	Apply the knowledge of advanced concepts of calculus in order to study theoretical development of different mathematical techniques and their applications.	2	1		3	2	1	2			2	1	1	2	2	

						C02	Use the idea of reduction formulae enables to solve an integral problem by reducing it to a problem of solving an easier integral problem	1		1		1	1		2	2	1	
						03	Develop the knowledge of computing arc length, area and volume by using integration.	1	2	1	2	1	1		1	1	2	
						CO4	Extend the knowledge of multiple integrals, scalar surface integrals, vector surface integrals and theorems of Green, Gauss and Stokes for exploring its use in physical sciences	1	2	1		2			1	2	2	
		2	5	55		001	Understand the concept of group, Ring and their properties.	1		2			1		2	2	3	
Algebra-II	T1-205				10	CO2	Analyze& demonstrate different types of algebraic structures such as subgroups Normal subgroups and Quotient groups to understand and use the fundamental results in Algebra.	1		2	2		2		2	2	1	
Alge	BMAT				4	CO3	Apply the concepts of isomorphism and homomorphism for groups and rings to solve different types of problems.	1		2		2	2		1	2	3	
						CO4	Access the idea of inner product space and determine its orthogonally on vector space, including gram – Schmidt orthogonalization to obtain orthonormal basis	1		2			2		2		1	

													1									
		2	5	55		001	Compare countable and uncountable sets	2		1	2							3		3	2	
sis-II	1-206				0	CO2	Apply various tests uniform convergence			1	2	2						1		3	2	
Analysis-II	BMAT1				4 1	03	Understand the interchange of limit ,derivative, integrals				3		1					1		3	2	1
						CO4	Understand the concept of metric spaces			1	3							2		3	2	
nd C		2	4	45		CO1	Implement programs using C.	1	2	3										2	1	3
omputer a	203					C02	Implement fundamental data structures in C.	3	1								2			2	1	3
Fundamentals of Computer and C Programming	BCAP1-203				400	03	Understand the fundamentals of hardware, software, and programming.												3	2	1	3
Fundam						CO4	Understand the logic building used in Programming.					2		1						2	1	3
and C		2	1	30		CO1	Implement programs using C	1	1	2	1	1	2	2	2	3	3	3	2	1	2	3
nentals of Computer and C Programming Lab	AP1-204				002	CO2	Implement fundamental data structures in C. Isomorphism of vector space and Null space etc.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
Fundamentals Progra	BC					800	Write the programming solutions for solving various real-life problems. augmented matrix, using rank.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3

						CO4	Implement Programs with pointers and arrays, perform pointer arithmetic, and use the pre-processor.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
nce		2	4	45		CO1	Understand the value of non-renewable Resources such as petroleum and natural gas.	1	1	2	1	1	2	2	2	3	3	3	2		3	
Environmental Science	BHUM1-202				4 0 0	CO2	Learn that how the bodies of living organisms decomposes after death.	1	2	1	1	2	2	2	3	3	3	3	2		2	
invironm	BHU				7	603	Find out the causes of distinct sorts of pollution and their solutions	1	2	1	1	1	3	2	3	3	3	3	2		3	
Щ						CO4	Grasp knowledge that how the rain water can be stored and used while climate changes like draught.	1	2	1	1	1	3	2	3	3	3	3	2		2	
		3	5	55		CO1	Understand the concept of ordinary differential equation, formation and order and degree of differential equation etc.	2			2	1	2	2	3			1		2	3	1
Differential equations-I	BMAT1-307				410	CO2	Apply various methods to Solve first order non-linear differential equation and linear differential equations of higher order	1			3	1	2	2	3			2		3	2	
Differ	B					603	Apply various power series methods to find series solution of differential equations.	2			3	1	2	1	1			1		1	2	
						CO4	Apply differential equations to significant applied and theoretical problems.	2			3	1	2	2	2			1		1	2	

S						CO1	Understand and use the concept of probability theory and statistics to solve industrial problems	2	1		2	3		1		2	1	1	2		
1 statistic	-308				0	CO2	Examine the two dimensional random variable, expectation, moments and its properties.	1	3		2	1	1	1					2		2
Mathematical statistics	BMAT1-308	3	5	55	4 1	603	Study the various discrete and continous distribuitions .	2	1		1	1	1	2		1	1	1	2		1
						C04	Understand the concept of Chi square, t ,F distributions and testing of hypothesis .	2	1	3	1	1		2			1		1		1
						CO1	Understand the relationship between different coordinate systems, transformation of axes and intersection of three planes.	1	3		1		1						1	1	
Geometry	BMAT1-309	3	5	55	410	C02	Apply the knowledge to obtain the equation of cone, enveloping cone, tangent plane, reciprocal cone of given cone and prove their results.	1	2		1		1						1	1	
	Bľ					03	Develop the equation of cylinder, right circular cylinder, enveloping cylinder.	1	2		1		1						1	1	
						CO4	Introduce the family of spheres passing through a circle, tangent planes and normal lines to a sphere and radical planes.	1	2		1		1						2	1	
Number Theory	BMAT1-310	3	5	55	410	CO1	Find quotients and remainders from integer division, Division algorithm, Apply Euclid's algorithm for the greatest common divisor, Linear Diophantine equations, Prime numbers	1	3		1		1	2					1		

						C02	Learn about congruence, residue classes and least residues add and subtract integers, modulo n, multiply integers and calculate powers, modulo n, Simultaneous linear congruence's	1	2		1		1	2						1		
						603	Familiarize with Arithmetic modulo p and related theorems, Solving congurences modulo prime powers.	1	2		1		1	2						1		
						CO4	Learn about Euler's Phi function, Euler's theorem and properties of the Phi Function	1	2		1		1	3						1		
						C01	Implement programs using C++.	1	1	1	1	1	2	2	2	3	3	3	2	1	2	3
						C02	Implement fundamental data structures in C++.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
gui						603	Learn various concepts of object-oriented approach towards problem solving.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
Object Oriented Programming	BCAP1-305	3	3	45	300	CO4	Create computer-based solutions to various real-world problems using Object oriented programming.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3

		_	4	20		1	T1		Ι	4	4	-					2			1		
ning lab		3	1	30		100	Implement programs using C++.	1	1	1	1	1	2	2	2	3	3	3	2	1	2	3
Object Oriented Programming lab	BCAP1-306				0.2	CO2	Implement fundamental data structures in C++.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
Oriented	BCAI				0	603	Learn programming from real world examples.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
Object						CO4	Create simple programs using classes and objects	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
		4	5	55		CO1	Understand the concept of partial differential equation of first order (linear and nonlinear).	2			2	1	2	2	3			1		2	2	
equations-II	1-410				0	CO2	Solve partial differential equations (linear and nonlinear) using various methods and apply these methods in solving some physical problems.	1			3	1	2	2	3			2		1	2	
Differential equations-II	BMAT1-410				41	603	Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation	2			3	1	2	1	1			1		2	1	
						CO4	Undertake any advanced course on ordinary as well as partial differential equations	2			3	1	2	2	2			1		2	1	
ä		4	5	55		CO1	Apply the knowledge of Algebra which enables to build mathematical thinking and skill.	1	2									1		2		
Linear Algebra	BMAT1-411				410	CO2	Analyze& solve problems related to Rank and Nullity of linear transformation etc.	2		1	3									2		
Ľ	E					603	Find eigenvalues and corresponding eigenvectors for a square matrix.	2			1			2	1					1		

						CO4	Identify the problems in mathematics and find their suitable solution.	1		1	2			3				2		
		4	5	55		CO1	Use Lagrange's equation for deriving equation of motions			2	2	3				2		1	3	
						C02	Apply the knowledge in Dynamics at higher levels.			1	2	3	3	2		2		3		
Mechanics-I	BMAT1-412				410	03	Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by Newton.			2	1	2	3					2	3	
						CO4	Study mechanical systems under generalized coordinate systems, Virtual work, Energy and momentum, to study mechanics developed by Lagrange, Hamilton, Jacobi and small oscillation				3		2	3	3	3	2	2	3	
		4	5	55		100	Learn various types of numerical methods to find the roots of nonlinear equations and solution of a system of linear equations.	3	3		2	3	1	2	2		2	2	1	2
Numerical Methods	BMAT1-413				10	CO2	Find values for a tabulated function using Interpolation techniques.	1	2		3	2	1	2			2	1	2	1
Numeric	BMA				4	603	Apply these numerical methods to solve ordinary differential equation.	2			3	2	1	1	2		1	3	1	2
						CO4	Introduce the basic concepts of Numerical Mathematics to solve the problems arising in science and engineering etc.	1	1		3	3	1	2	1		2	1	3	2

		4	3	45			Use Latex, Basic tools for Formatting text.		2	2						1			2	2	2
~	7					CO1															
Latex and R	BCAP1-407				300	C02	Producing Mathematical Formulae using Latex.			1			3	2			2		2	1	2
La	B(03	Able to formulate arrays and matrices		2		1		2				2		2	2	3
						C04	Consequently students can write research papers and prepare presentations.				3		2					2	2	1	2
		4	1	30		C01	Use Latex, Basic tools for Formatting text		2	2						1			2		3
						C02	Producing Mathematical Formulae using Latex			1		3	2			2			1	2	3
Latex and R lab	BCAP1-408				0.2	03	Arrays and Matrices	2			1		2				2		1		3
Latex	BCA				0	CO4	Consequently students can write research papers and prepare presentations.				3		2		3			2	2	2	3
ics-II	-514	5	5	55	0	CO1	Thorough understanding of dynamics is essential to understanding any modern development of Physical sciences.			2	2	3					2		1	3	
Mechanics-II	BMAT1-5				41(C02	Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by			1	2	2	3	2			2		2	3	

							Newton.												
						CO3	Mechanics and its applications are an excellent example of how physics and mathematics work hand in hand to give a complete picture of the real problems.		2	1	2	3					3	1	
						CO4	Reduction of two-body central force problem to an equivalent one-body problem, Central force motion in a plane.			3		2	3	3	3	2	2	2	
		5	5	55		001	Fourier series and its applications.		2	2	3				2		3	3	
Methods	515					C02	Fourier transform and its applications to P.D.E		1	2	2	3	2		2		3	2	
Mathematical Methods	BMAT1-515				410	03	Laplace transform and its applications to solutions of integrals and Differential Equations.		2	1	2	3					2	2	
						C04	Z-transforms and inverse Z-transforms and its importance in context of Difference equations.			3		2	3	3	3	2	2	1	
,		5	5	55		CO1	Students will be at ease to understand the various curves in space	2		3		1					2		
al Geometry	T1-516				10	C02	Students will be able to understand the behavior of the curves in various situations.			2	2					2		1	
Differential (BMAT1.				4	03	Students will be able to understand the Concept of surface			2		2				2	2		
						CO4	Students will be able to understand geodesics			1						2	1		

		1	ı —	ı —	ı —	1	1	ı			1 _	1 -		ı	1	1	ı					1
ethods	7	5	5	55		CO1	Demonstrate the steps of finite element methods in finding solution of Dynamic, Heat transfer, Solid Mechanic and Eigen value problems			2	2	3								2	3	
Finite Element Methods	BMAT1-517				410	C02	Analyze the real time situations and convert it into Finite Methods to find solutions			1	2			2						2		
Finite E	BN					603	Solve the Ordinary differential equations with Finite Element Method	2			1		2							3		
						CO4	Solve Elliptic, Hyperbolic and Parabolic P.D.E by Finite Element Method				3		2		3			2		3	1	
		5	3	45		C01	Use MatLab for Basic mathematics computations	1	2	1	1	1	2	2	2	3	3	3	2	1		3
\B	609					C02	Creating M-files,working with script tools and also writing script file	1	2	1	1	2	2	2	3	3	3	ß	2	2	1	2
MATLAB	BCAP1-509				300	03	Program scripts and functions using the MatLab development environment, Able to use basic flow controls (if else, for, while).	1	2	1	1	1	3	2	3	3	3	3	2	2		2
						C04	Use matlab for calculus , numerical integration and other mathematical operations.	1	2	1	1	1	3	2	3	3	3	3	2	1		3
		5	1	15		CO1	Understand the main features of the MatLab development environment	1	2	1	1	1	2	2	2	3	3	ß	2	2	2	3
AB Lab	1-510) 2	C02	Design simple algorithms to solve problems	1	2	1	1	2	2	2	3	3	3	3	2	2	2	3
MATLA]	BCAP1				0 0	603	Write simple programs in MaTLab to solve scientific and mathematical problems	1	2	2	1	1	3	2	3	3	3	3	2	1	1	3
						C04	Understand the main features of the MATLAB/SCILAB program development environment.	1	2	1	1	1	3	2	3	3	3	3	2	2	1	2

		6	5	55		CO1	Introduce and formulate linear programming models of real life situations.	1	2								1	1	1	
LPP	BMAT1-618				410	C02	Understand the selection and implementation of graphical solution and variants of simplex method for the solution of LPP.		1	1	2	1	1		1	1	2	2	2	
	BM					03	Develop the relationships between the primal and dual problems and their solutions.			1	2					1	2	1		
						004	Apply the knowledge to solve two-person zero-sum game problems	1	1		2	1	1			2	2	1	1	
		6	5	55		CO1	Know the fundamental concepts in ring theory such as the concepts of ideals, quotient rings, integral domains, and fields.		1	3		2						З	1	2
Ring Theory	BMAT1-619				410	CO2	Ring theory is powerful in terms of its scope and generality, but it can be simply described as the study of systems in which addition and multiplication are possible.			2	2					2		2	1	2
Rin	BM					CO3	Find radicals, bases etc. for special classes of finite dimensional algebras. The student is able to describe the corresponding module if a representation is given, and vice versa.			2		2				3		2	1	2
						CO4	Apply various concepts in real life problems			1						2		2	1	2

		6	5	55		CO1	Demo Understand the concept of several modelling techniques and analyze the resulting systems	1	1		3	1	2	3			3	1	
Aodelling	620					CO2	Analyze and construct mathematical models inspired by real life problems.	1	2	2	3	1	2	3			3	1	1
Mathematical Modelling	BMAT1-620				410	03	The use of mathematics software to observe the implementations of the above mentioned methods efficiently, and to enhance the problem solving skills.	2	3	2	2	2	1	2	3	2	3	2	1
						CO4	Solve physical problems using differential equations.nstrate the steps of finite element methods in finding solution of Dynamic, Heat transfer, Solid Mechanic and Eigen value problems	1	2	1	2	1					3	2	
		6	5	55		001	Significant concepts of partial order relations, Recurrence relations, Boolean algebra, Lattices and Graph Theory.		1	2		3					3	2	2
athematics	1-621				0	CO2	To understand logical concepts and to show logical equivalences by using truth tables and rules in logics.			3	2				2	2	2	1	2
Discrete Mathematics	BMAT1-621				4 1	03	Appreciate the definition and basics of graphs along with types and their examples.			2		2				3	2	1	2
						CO4	Understand the definition of a tree and learn its applications to fundamental circuits. Know the applications of graph theory to network flows. Relate the graph theory to the real-world problems.	1		1		2				2	2	1	2

tics		6	5	55		CO1	Quantitative analysis of financial transactions, understanding of different types of interest rates.	1		2	1		2		1		2	3	1	
mathematics	Т1-622				10	C02	Accumulated sum of annual annuity and of P-due annuity.		1	1		2		2		2		2	1	
Financial	BMA				4	603	Understand the concepts related to financial transactions yield.			2	2					1		2	1	
						CO4	Analyze real investments with different yields.					2	3		2		2	2	1	

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) & 12 (B) of UGC; Member AIU)

Bathinda-151001 (Punjab), India

Department: **DEPARTMENT OF MATHEMATICS**

MRSPTU MAIN CAMPUS, BATHINDA

Program: <u>B.SC (HONS.) (2019)</u>

Subject	S Code	Semester	Credit	Duration (Hrs)	LTP	Cos	Statement	PO1	P02	P03	PO4	POS	P06	PO7	PO8	P09	PO10	P011	P012	PSO1	PS02	PSO3
l-snl	S1-101		,	9	0	CO1	Apply the knowledge of basic concepts of calculus in order to study theoretical development of different mathematical techniques and their applications.	2	1		3	2	1	2			2	1	1	2	2	
Calculus-I	BMATS	1	4	0	31	CO2	Develop the skills to sketch the curves in a plane using its mathematical properties in the different coordinate systems of reference.	1	3		2		1							1	1	

						03	Apply derivatives for the computation of directional derivative and Optimization.	2	1	1	1	1	2		1	1	1	2	2	
					•	CO4	Extend the knowledge of Partial derivatives of higher order for further exploration of the subject for going into higher education	2	1	1			2					2	2	
						001	Understand the basic concepts of linear transformations, the Rank-Nullity Theorem, matrix of a linear transformation, algebra of transformations and the change of basis.	3		2			1			1		1	2	
Algebra-I	BMATS1-102	1	4	6 0	310	CO2	Analyze& solve problems related to Matrices, Quotient space, Homomorphism & Isomorphism of vector space and Null space etc.	1		2	2			2		1		2	1	
	В					CO3	Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix, using rank.	1		2	2					1		1	2	
						CO4	Find eigenvalues and corresponding eigenvectors for a square matrix	1		2	2			2				1	2	

	3					CO1	Understand many properties of the real line \mathbb{R} , including completeness and Archimedean properties				3				2			3		3	3	
Analysis-I	BMATS1-103	1	4	6 0	310	CO2	Apply the ratio, root, and alternating series and limit comparison tests for convergence and absolute convergence of an infinite series of real numbers.					1	1		3			3		3	2	
						03	Understand the concept of continuous functions, uniform continuity and discontinuity				1				2			2		3	3	
						CO4	Apply mean value theorem, Taylor's theorem					3	1					1		3	3	
n Programming	BMATS1-104	1	4	6	10	001	Operating Systems, Linux, Windows and other Operating Systems, Open Source Foundation and GNU		1			1	1	1		1	2	1	1	1	2	3
Fortran Pro	BMAT	_	7	0	3	CO2	Programming and Problem Solving, Basic FORTRAN, Control Constructs.	1	2	1		2		1	2	2	2	2	2	1	2	3
						CO3	Skills for writing computational programs.	1	2	1	1		2			1	3	3	3	1	2	3

						C04	Different numerical techniques utilized in programming.		1	1	1	1	2		1	2	3	3	3	1	2	3
		1	1	30		CO1	Use operating Systems, Linux, Windows and other Operating Systems, Open- Source Foundation and GNU	1	1	1	1	1	1	2	2	3	3	3	2	1	2	3
Fortran Programming lab	BMATS1-105				002	CO2	Use Programming and Problem Solving, Basic FORTRAN, Control Constructs.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
For						03	Design and code mid-level problems.	1	2	1	1	2	3	2	3	3	3	3	2	1	2	3
						CO4	Understand basic programming concepts Isomorphism of vector space and Null space etc.	2	2	1	1	2	3	2	3	3	3	3	2	1	2	3
		1	4	60		CO1	To know about the various dimensions of communication skills and to understand its importance	1	1	1	1	1	1	2	2	3	3	3	2	2		
English	BHSMC0-001				310	C02	To comprehend the role of communication at different levels (verbal, non-verbal, official, and non-official).	1	2	1	1	2	2	2	3	3	3	3	2	2	2	
						03	To know about the intricacies of written communication for office use.	1	2	1	1	1	3	2	3	3	3	3	2			3

						CO4	To make pupil prepare for presenting him/herself in interviews, GD etc.	1	2	1	1	1	3	2	3	3	3	3	2	2	2	2
		2	4	60		CO1	Apply the knowledge of advanced concepts of calculus in order to study theoretical development of different mathematical techniques and their applications.	2	1		3	2	1	2			2	1	1	2	2	
Calculus-II	BMATS1-201				310	CO2	Use the idea of reduction formulae enables to solve an integral problem by reducing it to a problem of solving an easier integral problem	1			1		1	1				2		2	1	
	BN					603	Develop the knowledge of computing arc length, area and volume by using integration.	1	2		1	2	1	1				1		1	2	
						CO4	Extend the knowledge of multiple integrals, scalar surface integrals, vector surface integrals and theorems of Green, Gauss and Stokes for exploring its use in physical sciences	1	2		1		2					1		2	2	
		2	4	60		CO1	Understand the concept of group, Ring and their properties.	1			2			1				2		2	3	
Algebra-II	BMATS1-202				310	CO2	Analyze& demonstrate different types of algebraic structures such as subgroups Normal subgroups and Quotient groups to understand and use the fundamental results in Algebra.	1			2	2		2				2		2	1	

						603	Apply the concepts of isomorphism and homomorphism for groups and rings to solve different types of problems.	1			2		2	2			1		2	3	
						CO4	Access the idea of inner product space and determine its orthogonally on vector space, including gram – Schmidt orthogonalization to obtain orthonormal basis	1			2			2			2			1	
		2	4	60		001	Compare countable and uncountable sets	2		1	2						3		3	2	
sis-II	\$1-203				0	CO2	Apply various tests uniform convergence			1	2	2					1		3	2	
Analysis-II	BMATS1-203				3 1	603	Understand the interchange of limit ,derivative, integrals				3		1				1		3	2	1
						CO4	Understand the concept of metric spaces			1	3						2		3	2	
nd C		2	4	60		CO1	Implement programs using C.	1	2	3									2	1	3
mputer a	-204					CO2	Implement fundamental data structures in C.	3	1							2			2	1	3
Fundamentals of Computer and C Programming	BMATS1-204				310	03	Understand the fundamentals of hardware, software, and programming.											3	2	1	3
Fundam						CO4	Understand the logic building used in Programming.					2		1					2	1	3

		2	1	30			Implement programs using													1	2	3
ımming Lab		2	1	30		100	Implement programs using C	1	1	2	1	1	2	2	2	3	3	3	2	1	2	3
and C Progra	31-205				2	CO2	Implement fundamental data structures in C. Isomorphism of vector space and Null space etc.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
Fundamentals of Computer and C Programming Lab	BMATS1				0 0	603	Write the programming solutions for solving various real-life problems. augmented matrix, using rank.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
Fundame						C04	Implement Programs with pointers and arrays, perform pointer arithmetic, and use the pre-processor.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
ence		2	4	60		CO1	Understand the value of non-renewable Resources such as petroleum and natural gas.	1	1	2	1	1	2	2	2	3	3	3	2		3	
ental Scie	BMNCC0-003				10	C02	Learn that how the bodies of living organisms decomposes after death.	1	2	1	1	2	2	2	3	3	3	3	2		2	
Environmental Science	BMN				3	603	Find out the causes of distinct sorts of pollution and their solutions	1	2	1	1	1	3	2	3	3	3	3	2		3	
Щ						C04	Grasp knowledge that how the rain water can be stored and used while climate changes like draught.	1	2	1	1	1	3	2	3	3	3	3	2		2	
Differential equations-I	BMATS1-301	3	4	60	310	CO1	Understand the concept of ordinary differential equation, formation and order and degree of differential equation etc.	2			2	1	2	2	3			1		2	3	1

	C02	Apply various methods to Solve first order non-linear differential equation and linear differential equations of higher order	1		3	1	2	2	3		2	3	2	
	03	Apply various power series methods to find series solution of differential equations.	2		3	1	2	1	1		1	1	2	
	C04	Apply differential equations to significant applied and theoretical problems.	2		3	1	2	2	2		1	1	2	

tical BMATS	3	4	60	310	001	Understand and use the concept of probability theory and statistics to solve industrial problems	2	1		2	3		1			2	1	1	2		
-------------	---	---	----	-----	-----	--	---	---	--	---	---	--	---	--	--	---	---	---	---	--	--

						C02	Examine the two dimensional random variable, expectation, moments and its properties.	1	3		2	1	1	1					2		2
						03	Study the various discrete and continous distribuitions.	2	1		1	1	1	2		1	1	1	2		1
						CO4	Understand the concept of Chi square, t ,F distributions and testing of hypothesis .	2	1	3	1	1		2			1		1		1
						001	Understand the relationship between different coordinate systems, transformation of axes and intersection of three planes.	1	3		1		1						1	1	
Geometry	BMATS1-303	3	4	60	310	C02	Apply the knowledge to obtain the equation of cone, enveloping cone, tangent plane, reciprocal cone of given cone and prove their results.	1	2		1		1						1	1	
	BN					03	Develop the equation of cylinder, right circular cylinder, enveloping cylinder.	1	2		1		1						1	1	
						CO4	Introduce the family of spheres passing through a circle, tangent planes and normal lines to a sphere and radical planes.	1	2		1		1						2	1	
er Theory	BMATS1-304	3	4	60	10	CO1	Find quotients and remainders from integer division, Division algorithm, Apply Euclid's algorithm for the greatest common divisor, Linear Diophantine equations, Prime numbers	1	3		1		1	2					1		
Number'	BMA'				3	CO2	Learn about congruence, residue classes and least residues add and subtract integers, modulo n, multiply integers and calculate powers, modulo n, Simultaneous linear congruence's	1	2		1		1	2					1		

						03	Familiarize with Arithmetic modulo p and related theorems, Solving congurences modulo prime powers.	1	2		1		1	2						1		
						C04	Learn about Euler's Phi function, Euler's theorem and properties of the Phi Function	1	2		1		1	3						1		
						001	Implement programs using C++.	1	1	1	1	1	2	2	2	3	3	3	2	1	2	3
						C02	Implement fundamental data structures in C++.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3
č	2					CO3	Learn various concepts of object-oriented approach towards problem solving.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
Object Oriental Becomming	PMATS1.305		4		3.10	ı	Create computer-based solutions to various real-world problems using Object oriented programming.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
riented	S1-306	3	1	30	. 2	CO1	Implement programs using C++.	1	1	1	1	1	2	2	2	3	3	3	2	1	2	3
Object Oriented	BMATS1-306				0 0	CO2	Implement fundamental data structures in C++.	1	2	1	1	2	2	2	3	3	3	3	2	1	2	3

							Learn programming from real	1	2	1	1	1	3	2	3	3	3	3	2			
						03	world examples.	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
						C04	Create simple programs using classes and objects	1	2	1	1	1	3	2	3	3	3	3	2	1	2	3
		4	4	60		001	Understand the concept of partial differential equation of first order (linear and nonlinear).	2			2	1	2	2	3			1		2	2	
Differential equations-II	BMATS1-401				10	CO2	Solve partial differential equations (linear and nonlinear) using various methods and apply these methods in solving some physical problems.	1			3	1	2	2	3			2		1	2	
Differential	BMAT				3 1	003	Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation	2			3	1	2	1	1			1		2	1	
						CO4	Undertake any advanced course on ordinary as well as partial differential equations	2			3	1	2	2	2			1		2	1	
		4	4	60		001	Apply the knowledge of Algebra which enables to build mathematical thinking and skill.	1	2									1		2		
Linear Algebra	BMATS1-402				10	CO2	Analyze& solve problems related to Rank and Nullity of linear transformation etc.	2		1	3									2		
Linear.	BMAT				3 :	603	Find eigenvalues and corresponding eigenvectors for a square matrix.	2			1			2	1					1		
						CO4	Identify the problems in mathematics and find their suitable solution.	1		1	2			3						2		

		4	4	60		CO1	Use Lagrange's equation for deriving equation of motions			2	2	3				2		1	3	
						0														
						C02	Apply the knowledge in Dynamics at higher levels.			1	2	3	3	2		2		3		
Mechanics-I	BMATS1-403				310	003	Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by Newton.			2	1	2	3					2	3	
						CO4	Study mechanical systems under generalized coordinate systems, Virtual work, Energy and momentum, to study mechanics developed by Lagrange, Hamilton, Jacobi and small oscillation				3		2	თ	3	3	2	2	3	
		4	4	60		CO1	Learn various types of numerical methods to find the roots of nonlinear equations and solution of a system of linear equations.	3	3		2	ß	1	2	2		2	2	1	2
Numerical Methods	BMATS1-404				10	C02	Find values for a tabulated function using Interpolation techniques.	1	2		ß	2	1	2			2	1	2	1
Numeric	BMA				3	603	Apply these numerical methods to solve ordinary differential equation.	2			3	2	1	1	2		1	3	1	2
						CO4	Introduce the basic concepts of Numerical Mathematics to solve the problems arising in science and engineering etc.	1	1		3	3	1	2	1		2	1	3	2

		4	4	60		CO1	Use Latex, Basic tools for Formatting text.		2	2						1			2	2	2
2	105					ö															
Latex and R	BMATS1-405				310	C02	Producing Mathematical Formulae using Latex.			1			3	2			2		2	1	2
Ĺ	BN					603	Able to formulate arrays and matrices		2		1		2				2		2	2	3
						C04	Consequently students can write research papers and prepare presentations.				3		2					2	2	1	2
		4	1	30		CO1	Use Latex, Basic tools for Formatting text		2	2						1			2		3
						C02	Producing Mathematical Formulae using Latex			1		თ	2			2			1	2	3
Latex and R lab	BMATS1-406				0.02	03	Arrays and Matrices	2			1		2				2		1		3
Latex	BMA				0	CO4	Consequently students can write research papers and prepare presentations.				3		2		3			2	2	2	3
ics-II	1-501	5	4	60	0	CO1	Thorough understanding of dynamics is essential to understanding any modern development of Physical sciences.			2	2	3					2		1	3	
Mechanics-	BMATS1-5				31	CO2	Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by			1	2	2	3	2			2		2	3	

							Newton.												
							rewon.												
						603	Mechanics and its applications are an excellent example of how physics and mathematics work hand in hand to give a complete picture of the real problems.		2	1	2	3					3	1	
						CO4	Reduction of two-body central force problem to an equivalent one-body problem, Central force motion in a plane.			3		2	3	3	3	2	2	2	
		5	4	60		001	Fourier series and its applications.		2	2	3				2		3	3	
Methods	-502					CO2	Fourier transform and its applications to P.D.E		1	2	2	3	2		2		3	2	
Mathematical Methods	BMATS1-502				310	003	Laplace transform and its applications to solutions of integrals and Differential Equations.		2	1	2	3					2	2	
						C04	Z-transforms and inverse Z-transforms and its importance in context of Difference equations.			3		2	3	3	3	2	2	1	
/		5	4	60		100	Students will be at ease to understand the various curves in space	2		3		1					2		
Differential Geometry	BMATS1-503				10	005	Students will be able to understand the behavior of the curves in various situations.			2	2					2		1	
Differenti	BMA				3	03	Students will be able to understand the Concept of surface			2		2				2	2		
						CO4	Students will be able to understand geodesics			1						2	1		

thods		5	4	60		CO1	Demonstrate the steps of finite element methods in finding solution of Dynamic, Heat transfer, Solid Mechanic and Eigen value problems			2	2	3								2	3	
Finite Element Methods	BMATS1-504				310	CO2	Analyze the real time situations and convert it into Finite Methods to find solutions			1	2			2						2		
Finite E	BM					03	Solve the Ordinary differential equations with Finite Element Method	2			1		2							3		
						CO4	Solve Elliptic, Hyperbolic and Parabolic P.D.E by Finite Element Method				3		2		3			2		3	1	
		5	4	60		CO1	Use MatLab for Basic mathematics computations	1	2	1	1	1	2	2	2	3	3	3	2	1		3
	5					CO2	Creating M-files,working with script tools and also writing script file	1	2	1	1	2	2	2	3	3	3	3	2	2	1	2
MATLAB	BMATS1-505				310	603	Program scripts and functions using the MatLab development environment, Able to use basic flow controls (if else, for, while).	1	2	1	1	1	3	2	3	3	3	3	2	2		2
						C04	Use matlab for calculus, numerical integration and other mathematical operations.	1	2	1	1	1	3	2	3	3	3	3	2	1		3
ab	90	5	1	15		001	Understand the main features of the MatLab development environment	1	2	1	1	1	2	2	2	3	3	3	2	2	2	3
MATLAB Lab	BMATS1-50				002	C02	Design simple algorithms to solve problems	1	2	1	1	2	2	2	3	3	3	3	2	2	2	3
M^{k}	BN					603	Write simple programs in MaTLab to solve scientific and mathematical problems	1	2	2	1	1	3	2	3	3	3	3	2	1	1	3

						CO4	Understand the main features of the MATLAB/SCILAB program	1	2	1	1	1	3	2	3	3	3	3	2	2	1	2
							development environment.															
		6	4	60		001	Introduce and formulate linear programming models of real life situations.	1	2										1	1	1	
LPP	BMATS1-601				310	C02	Understand the selection and implementation of graphical solution and variants of simplex method for the solution of LPP.		1		1	2	1	1			1	1	2	2	2	
	BM/					03	Develop the relationships between the primal and dual problems and their solutions.				1	2						1	2	1		
						CO4	Apply the knowledge to solve two-person zero-sum game problems	1	1			2	1	1				2	2	1	1	
		6	4	60		CO1	Understand calculus of complex functions also concept and consequences of analyticity and Cauchy-Riemann equations .	3	3	2	3	3	2	2	3	3	1	1	1	3	1	
Complex Analysis	BMATS1-602				310	CO2	Understanding Geometrical interpretation of Complex functions especially bilinear and conformal transformations.	3	3	2	3	3	2	2	3	3	1	1	1	3	1	
Con	Bľ					603	Formulation of analytic functions and their applications.	3	3	2	3	3	2	2	3	3	1	1	1	3	2	
						CO4	Represent complex functions as Taylor, power and Laurent series, classification of singularities.	3	3	2	3	3	2	2	3	3	1	1	1	3	3	

		6	4	60		C01	Demo Understand the concept of several modelling techniques and analyze the resulting systems	1	1		3	1	2	3			3	1	
1 Modelling	\$1-603				0	CO2	Analyze and construct mathematical models inspired by real life problems.	1	2	2	3	1	2	3			3	1	1
Mathematical Modelling	BMATS1-603				3.1	603	The use of mathematics software to observe the implementations of the above mentioned methods efficiently, and to enhance the problem solving skills.	2	3	2	2	2	1	2	3	2	3	2	1
						CO4	Solve physical problems using differential equations.nstrate the steps of finite element methods in finding solution of Dynamic, Heat transfer, Solid Mechanic and Eigen value problems	1	2	1	2	1					3	2	
		6	4	60		CO1	Significant concepts of partial order relations, Recurrence relations, Boolean algebra, Lattices and Graph Theory.		1	2		3					3	2	2
Discrete Mathematics	MATS1-604				10	C02	To understand logical concepts and to show logical equivalences by using truth tables and rules in logics.			3	2				2	2	2	1	2
Discrete 1	BMA				3	03	Appreciate the definition and basics of graphs along with types and their examples.			2		2				3	2	1	2
						CO4	Understand the definition of a tree and learn its applications to fundamental circuits. Know the applications of graph theory to network flows. Relate the graph	1		1		2				2	2	1	2

							theory to the real-world problems.													
tics		6	4	60		001	Quantitative analysis of financial transactions, understanding of different types of interest rates.	1		2	1		2		1		2	3	1	
mathematic	FS1-605				1 0	C02	Accumulated sum of annual annuity and of P-due annuity.		1	1		2		2		2		2	1	
Financial	BMATS1				3	603	Understand the concepts related to financial transactions yield.			2	2					1		2	1	
						CO4	Analyze real investments with different yields.					2	3		2		2	2	1	

Enter Correction levels 1, 2 or 3 as defined below:

1. Slight (Low) - upto 30% 2. Moderate (Medium) – above 30% and upto 70%

3. Substantial (High) – above 70%