MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB), INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) \& 12 (B) of UGC; Member AIU)

Department: MATHEMATICS
MRSPTU main campus ,Bathinda

Program: M.Sc.
COURSE ARTICULATION MATRIX (STUDY SCHEME: 2016)

	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \dot{\#} \\ & \frac{\ddot{v}}{\mathbf{u}} \end{aligned}$		$\stackrel{\circ}{\llcorner }$	ô		O-	No	Ò	O	응	욤	io	©	잉	$\begin{aligned} & 0 \\ & \text { ol } \end{aligned}$	금	N	Oin	$\begin{aligned} & \text { No } \\ & \text { On } \end{aligned}$	へ0
T0 0 0 0 0 0 0 0 0 0	$\overline{6}$ \vdots \sum \sum \sum	1	4	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & \text { o } \end{aligned}$	-1	Analyze \& demonstrate different types of algebraic structures such as subgroups Normal subgroups, Quotient groups and Sylow theorems to solve different types of problems.	3	1			1	1			1				2	1	

							problem efficiently.														
						O	Develop understanding of numerical error and applicability of a particular method		1	2		1	1	3		3	2		2		2
$\begin{aligned} & \text { io } \\ & \frac{0}{0} \\ & 0.2 \\ & 0 \end{aligned}$	$\overrightarrow{3}$3$\sum$$\sum$	3	4	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	\circ \circ	$\underset{0}{8}$	Illustrate the concept of topological spaces and continuous functions, product topology and quotient topology.		1			2					2		1	1	3
						O	Distinguish different examples of general, geometric and algebraic topology.			1	2		3	2			2		1	2	3
						O	Understand several standard concepts of metric spaces and their properties like openness, closeness, completeness, compactness, and connectedness.			1		2	3						2	2	3
						O	Identify the continuity of a function defined on metric spaces and homeomorphisms.	1			2		2				2	2	2	2	3
$\begin{aligned} & \tilde{0} \\ & \text { た } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{N}{m}$$\stackrel{y}{m}$$\stackrel{y}{2}$$\sum$$\sum$	3	4	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \circ \\ & \circ \\ & + \end{aligned}$	-1	Construct an optimization problem from its physical interpretation to get its solution by using a suitable optimization technique.		1	3			2						2	1	1
						No	Implement an appropriate optimization technique to solve a particular optimization problem.		1	1			2		2		1		1	2	1
						${ }_{0}^{0}$	Apply the knowledge of basic optimization techniques to get the best possible results from a set of several possible solutions of transportation						1		2		2		1	1	1

						Ơ	Find stationary values or paths and use of EulerLagrange equations.	3		2			1			2	1	1
						Ơ	Understand the concept of integral equations and its types along with solutions by various methods.	2			1		3			2		2
						O	Convert Differential equations into integral equations and vice versa.	2				2	2			2		2
		3	1	$\begin{array}{\|l\|} \hline 3 \\ 0 \\ \hline \end{array}$		O	Inculcate confidence to communicate effectively through soft skills and presentations.		1				3	1	2			1
T	$\frac{n}{9}$					õ	Enhance the subject enrichment through the detail study of the topic to be presented	2	1						1	2	1	1
$\begin{aligned} & \text { 菏 } \\ & \text { En } \end{aligned}$	\sum_{k}^{E}				O	ô	Development of innovation and creativity through the selection and preparation of topic to be presented.	2	1				2		2			2
						O	Develop the ethical skills and team work responsibilities through the discussion of preparation of the presentations.			1			3	3	2	2		2
		3	4	$\begin{array}{\|l\|} \hline 4 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{+} \end{aligned}$	of	Concept of Fourier series and its importance in various fields	3		2	1	2	2			3	1	1

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA－151001（PUNJAB），INDIA

（A State University Estb．by Govt．of Punjab vide Punjab Act No． 5 of 2015 and Approved u／s 2（f）\＆ 12 （B）of UGC；Member AIU）

Department：MATHEMATICS
MRSPTU main campus，Bathinda

Program：M．Sc．
（2019）

COURSE ARTICULATION MATRIX（STUDY SCHEME：2019）

$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{亏} \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \stackrel{\#}{⿱ ⿻ 上 丨 ⿹ ⿺ ㇒ 一 丶 ⿰ 工 凡} \end{aligned}$		은	¢		20	N	\％	\％	움	움	움	o̊	움	임	금	Ñ	Oin	Õ	O
$\begin{aligned} & \mathscr{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\square}$					－	Analyze\＆demonstrate different types of algebraic structures such as subgroups Normal subgroups，Quotient groups and Sylow theorems to solve different types of problems．	3	1			1	1			1				2	1	
$\begin{aligned} & \mathbb{Z} \\ & \stackrel{U}{U} \\ & \tilde{y} \\ & \stackrel{\rightharpoonup}{<} \end{aligned}$	\sum_{\sum}^{E}	1	4	$\begin{aligned} & 6 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\sigma} \end{aligned}$	õ	Understand proofs of some results such as Fundamental theorem of arithmetic， Solvable groups to understand and use the fundamental results in Algebra． and Jordan－holder theorem．	1	2			2	1			2				2	1	

						Ò	Understand the concept of Ring and subring, various type of ideals	2	2		2	2	2		2	1	1
						O	Apply various concepts of factorization domains in real life problems	1	1		1	1	2		2	1	
	$$	1	46 0		$\begin{aligned} & \circ \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{-1}{8}$	Describe fundamental properties of the real numbers that lead to the formal development of real analysis.		2	3		1			2	1	2
					O	Demonstrate an understanding of limits and how they are used in sequences, series, Construct rigorous mathematical proofs of basic results in real analysis.			2	2			2	2	1	2	
					$\stackrel{0}{0}$	Understand Integrability and theorems on integrability. Recognize the difference between point wise and uniform convergence of a sequence of functions.			2		2		3	2	1	2	
					O	Illustrate the effect of uniform convergence on the limit function with respect to continuity, differentiability, and integrability.	1		1				2	2	1	3	

							problem efficiently.														
						$\stackrel{7}{O}$	Develop understanding of numerical error and applicability of a particular method		1	2		1	1	3		3	2		2		2
$\begin{aligned} & \text { 俞 } \\ & \frac{0}{0} \\ & \stackrel{2}{6} \end{aligned}$	$\begin{aligned} & \vec{~} \\ & \stackrel{y}{1} \\ & \dot{E} \\ & \sum \\ & \sum \end{aligned}$	3	4	6		of	Illustrate the concept of topological spaces and continuous functions, product topology and quotient topology.		1			2					2		1	1	3
						õ	Distinguish different examples of general, geometric and algebraic topology.			1	2		3	2			2		1	2	3
						$\stackrel{0}{0}$	Understand several standard concepts of metric spaces and their properties like openness, closeness, completeness, compactness, and connectedness.			1		2	3						2	2	3
						O	Identify the continuity of a function defined on metric spaces and homeomorphisms.	1			2		2				2	2	2	2	3
		3	4	$\begin{array}{\|l\|} \hline 6 \\ 0 \end{array}$		$\stackrel{7}{8}$	Construct an optimization problem from its physical interpretation to get its solution by using a suitable optimization technique.		1	3			2						2	1	1
	$\frac{\underset{N}{N}}{\frac{N}{E}}$				$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	Ơ	Implement an appropriate optimization technique to solve a particular optimization problem.		1	1			2		2		1		1	2	1
						$\stackrel{\sim}{8}$	Apply the knowledge of basic optimization techniques to get the best possible results from a set of several possible solutions of transportation						1		2		2		1	1	1

						Ơ	Find stationary values or paths and use of EulerLagrange equations.		3			2			1				2	1	1
						Ơ	Understand the concept of integral equations and its types along with solutions by various methods.		2				1		3				2		2
						$\stackrel{7}{8}$	Convert intor ifferential equations into integral equations and vice versa.		2					2	2				2		2
	$\frac{n}{2}$		1	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	응	8	Inculcate confidence to communicate effectively through soft skills and presentations.			1					3		1	2			1
						Õ	Enhance the subject enrichment through the detail study of the topic to be presented		2	1								1	2	1	1
						on	Development of innovation and creativity through the selection and preparation of topic to be presented.		2	1					2			2			2
						$\stackrel{\square}{8}$	Develop the ethical skills and team work responsibilities through the discussion of preparation of the presentations.					1			3		3	2	2		2
	$\frac{\bullet}{\substack{n}}$	3	4	$\begin{array}{\|l\|} \hline 6 \\ 0 \end{array}$	$\stackrel{\circ}{\circ}$	$\stackrel{7}{8}$	Concept of Fourier series and its importance in various fields		3			2	1	2	2				3	1	1
						Õ	Understand the basic concepts of Fourier analysis.		2		3				1	1			3	2	1
						Ọ	Understand the use of Fourier transforms and its applications to Boundary Value problems	2				3	2						3	2	

						$\stackrel{8}{8}$	Able to have knowledge about Discrete Fourier transforms Fast Fourier transforms and their use in technology	2		2	2					2	2	
	$\frac{\sqrt[n]{n}}{\infty}$			$\begin{aligned} & \hline 6 \\ & 0 \end{aligned}$	$\stackrel{\circ}{\circ}$	8	Find numerical solutions of system of linear equations and check the accuracy of the solutions.	2			3	1	1	2		2	2	3
						O	Compare the viability of different approaches to the numerical solution of problems arising in roots of solution of nonlinear equations, Finite difference methods	2		3				1	1	2	$\begin{array}{r}1 \\ \\ \\ \\ \hline\end{array}$	3
						${ }_{0}^{\text {O}}$	Solve initial and boundary value problems in differential equations using numerical methods.				1	3				2	1	2
						$\stackrel{\text { O}}{\bigcirc}$	Apply various numerical methods in real life problems like finite element method.	2		2	1			2		2	2	2
		4	4	$\begin{aligned} & 6 \\ & 0 \end{aligned}$		$\stackrel{7}{8}$	Define divisibility, greatest common divisor, Prime numbers, congruence,				1	2					2	
$\begin{aligned} & \text { I } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & Z \\ & Z \end{aligned}$					$\stackrel{\circ}{\circ}$	Õ	Understand the concept of Mobius function $\mu(\mathrm{n})$, The Euler totient function $\varphi(\mathrm{n})$, Mangolt function Λ (n), Liouvilles function, The divisor function and primefactorization.	2	1			2	1					
						$\stackrel{\sim}{0}$	Derive Euler Summation formula, Dirichlet inversion formula, Mobius inversion formula.	2				1	3					2

						$\stackrel{7}{8}$	Familiar with elementary theorems on Distribution of prime numbers,Dirichlet character.		1		1	2	2			2		2
	$\stackrel{F}{7}$	4	4 C			$\stackrel{7}{8}$	Analyze the basic idea of finite dimensional normed spaces and subspaces and also to identify selfadjoint transformations	1	2	2	3			2		2	1	3
						õ			1	2	2	3	2	2		2	$\begin{array}{r}1 \\ \\ \\ \hline\end{array}$	3
					$\begin{aligned} & \circ \\ & \circ \\ & + \end{aligned}$	$\stackrel{0}{3}$	This course covers major theorems of Functional Analysis that have applications in Ordinary and Partial Differential Equations. Review of linear spaces and their norms. The HahnBanach, Baire Category, Uniform Boundedness Principle, Open Mapping and Closed Graph theorems.		2	1	2	3				2	1	2
						O	Apply various methods in real life problems	1		2		2	3	3	2	2	1	2
	$\frac{\infty}{\underset{\pi}{E}}$	4	4	$\begin{array}{\|l\|} \hline 6 \\ 0 \end{array}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\sigma} \end{aligned}$	$\stackrel{7}{8}$	Apply a range of techniques to solve first \& second order partial differential equations.		1	2	3			2		2	2	2
						ก̃	Model physical phenomena using partial differential equations such as the heat and wave equations.		1	2	2	3	2	2		2	2	3

							Distributions and Sampling Tests－F－Test，Chi square test．															
						õ	Understand problem of statistical inference，problem of point estimation ， Properties of point estimator such Consistency， Unbiasedness，Sufficiency		2	1	1		2									
						0_{0}^{0}	Obtain minimum variance unbiased estimator．		2	1	1		2									2
						O	Obtain estimators using estimation methods such as Maximum likelihood\＆its properties，Minimum chi square，method of moments， method of scoring．				2	1		1	1	3				2		2
		4	4	$\begin{array}{\|l\|} \hline 6 \\ 0 \end{array}$		8	Identify fuzzy sets and perform set operations．		2		2	2				1	1			3		1
$$	of					Ơ	Classify the various operations on fuzzy sets	1	3			2				1	1			2		1
	\sum_{\sum}^{E}				악	ƠO	Apply fuzzy logic in various real life situations．		2			3					1			1		2
$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \text { N } \\ & \text { N } \end{aligned}$						$\stackrel{8}{8}$	Decide the difference between crisps and fuzzy set theory．		2			1	1							2		2
		4	3	$\begin{array}{\|l\|} \hline 4 \\ 0 \\ \hline \end{array}$	응	$\stackrel{7}{8}$	Describe the fundamentals of Information Technology（IT） infrastructure components： hardware，software，and data communications systems．	1	1	2	1	1	1	2	2	3	3	3	2	1	2	2

						Ơ	Identify emerging technologies for use in business applications.	1	1	2	1	2	1	2	3	3	3	3	2	1	2	2
						$\stackrel{0}{0}$	Demonstrate basic skills involving spreadsheet functions; create formulas, charts, and graphs; manipulate data; and generate reports	1	1	2	2	2	2	2	3	3	3	3	2	1	2	2
						$\stackrel{7}{8}$	Gain an education for office careers by focusing on developing communication skills as well as skills in office technology systems.	1	1	2	2	2	2	2	3	3	3	3	2	1	2	2
		4	3	$\begin{aligned} & 4 \\ & 0 \end{aligned}$		8	Understand role the ethics and values in Business.								3				1		1	
					O	õ	Understand role the ethics in functioning of various departments of organization like Marketing, Finance \& HR.								1				2	1		
$\stackrel{y}{0}$						$\stackrel{0}{0}$	Analyze the ethics in society and Business.					1	1	1	2							
						O	Implement Individual \& Group policies and laws of ethics.									2		1	2			

Enter Correction levels 1, 2 or 3 as defined below:

1. Slight (Low) - upto 30\%
2. Moderate (Medium) -above 30\% andupto70\%
3. Substantial (High) - above 70\%
