

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB), INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) & 12 (B) of UGC; Member AIU)

Department: MATHEMATICS

MRSPTU main campus ,Bathinda

Program: <u>M.Sc.</u>

Subject	S Code	Semester	Credit	Duration (Hrs)	LTP	Cos	Statement	P01	P02	P03	P04	POS	906	P07	P08	60d	PO10	P011	P012	PS01	PSO2	PSO3
Abstract Algebra	MMAT1-101	1	4	4 5	400	C01	Analyze& demonstrate different types of algebraic structures such as subgroups Normal subgroups, Quotient groups and Sylow theorems to solve different types of problems.	3	1			1	1			1				2	1	

COURSE ARTICULATION MATRIX (STUDY SCHEME: 2016)

						CO2	Understand proofs of some results such as Fundamental theorem of arithmetic, Solvable groups to understand and use the fundamental results in Algebra. and Jordan -holder theorem.	1	2		2	1	2		2	1	
						CO3	Understand the concept of Ring and subring, various type of ideals	2	2		2	2	2		2	1	1
						CO4	Apply various concepts of factorization domains in real life problems	1	1		1	1	2		2	1	
						C01	Describe fundamental properties of the real numbers that lead to the formal development of real analysis.		2	3		1			2	1	2
Real Analysis	MMAT1-102	1	4	4		C02	Demonstrate an understanding of limits and how they are used in sequences, series, Construct rigorous mathematical proofs of basic results in real analysis.			2	2			2	2	1	2
Real A	MMA	-		5	400	CO3	Understand Integrability and theorems on integrability. Recognize the difference between point wise and uniform convergence of a sequence of functions.			2		2		3	2	1	2
						CO4	Illustrate the effect of uniform convergence on the limit function with respect to continuity, differentiability, and integrability.	1		1				2	2	1	3

						C01	Use of the Lagrange's equation for deriving equation of motions		2		2	1	2	2		2	3	1
Mechanics	MMAT1-103	1	4	4 5	400	C02	Understand necessary conditions for the equilibrium of particles acted upon by various forces and learn the principle of virtual work for a system of coplanar forces acting on a rigid body.		1	3				1	1	2	1	1
						CO3	Deal with the kinematics and kinetics of the rectilinear and planar motions of a particle including the constrained oscillatory motions of particles.		1		2	3				2	3	2
						CO4	Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by Newton.		2	2	2			2		1	2	2
Differential equations	MMAT1-104	1	4	4 5	400	C01	Understand the concept of existence and uniqueness of solutions and also emphasizes the justification of methods for approximating solutions in pure and applied mathematics	2	3		2	1		1	1	1	1	

						C02	Understand partial differential equations of various type, their classification and solution	2	2	1	2					2				2	1	
						CO3	Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems	2	1		1									2	1	1
						CO4	Discuss about autonomous system , Phase plane and critical points etc. continuity,	1	2				1	3						1		1
c and C		1	4	4 5		C01	Implement programs using C.	1	1	1	1	1	1	2	2	3	3	3	2	1	1	2
omputer ming	-193				(C02	Implement fundamental data structures in C.	1	1	1	1	2	2	2	3	3	3	3	2	1	2	2
Fundamentals of Computer and C Programming	MCAP0-193				400	CO3	Understand the fundamentals of hardware, software, and programming.	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2
Fundar						C04	Understand the logic building used in Programming	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2
and C		1	1	6 0		C01	Implement programs using C.	1	1	1	1	1	1	2	2	3	3	3	2	1	1	2
omputer ng Lab	-194					C02	Implement fundamental data structures in C.	1	1	1	1	2	2	2	3	3	3	3	2	1	2	2
nentals of Compute Programming Lab	MCAP0-194				0 0 2	CO3	Write the programming solutions for solving various real-life problems	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2
Fundamentals of Computer and C Programming Lab						C04	Implement Programs with pointers and arrays, perform pointer arithmetic, and use the pre-processor.	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2

		2 4	45		C01	Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.	3	1			1	1		1			2	1	
Advanced Algebra	MMAT1-205			400	CO2	Prove the basic results of inner product space, field extensions, Finite fields and GaloisTheory.	1	2			2	1		2			2	1	1
Adva	M				CO3	Apply the concepts of Gauss Lemma, Einstein's irreducibility criterion, separable extensions etc.	2	2			2	2		2			2	1	1
					CO4	Understand the logic building used in Programming	1	1			1	1		2				1	2
tion		2 4	4 5		C01	Understand and implement the idea of Lebesgue Measure of Sets and Functions.		3				2	1				3		2
Measure Theory and Integration	[1-206			0	C02	Document insight in modern theory of integration as a tool in advanced analysis and in statistics		2		2	1						3	1	1
e Theory	MMAT1-206			400	CO3	Analyse the comparison of Riemann and lebesgue integral		1	2					2	2		2		1
Measur					C04	ImplementLebesgueIntegrationandLebesgueDifferentiation,Fatou'sLemma & Theory on LP-Space		2			3		1				2		1

		2	4	45		CO1	Understand the concept and consequences of analyticity and Cauchy-Riemann equations and knowing basic difference between real & complex calculus and conformal mappings.		3		2			3	3		1		3	1	
Complex Analysis	MMAT1-207				0 0	C02	Understanding Geometrical interpretation of Complex functions.	1	2	2	2	3		2					3	2	1
Complex	MMA				4	CO3	Evaluation of contour integrals directly by the use of Cauchy's theorem and Cauchy's integral formula.			2	1	3		2		3			3	1	1
						CO4	Represent functions as Taylor, power and Laurent series, classify singularities and poles, find residue and complex integrals using residue theorem.		2			1				2			3	2	
metry		2	4	4 5		C01	Explain the basic concepts of tensors, Understand role of tensors in differential geometry.		1			2					1		1	2	
cerential Geo	MMAT1-208				400	C02	Learn various properties of curves including Frenet–Serret formulae and their applications		2	3			2	1	1				2	1	
Tensor and Differential Geometry	MMA				4	CO3	Know the Interpretation of the curvature tensor, Geodesic curvature, Gauss and Weingarten formulae		3				2	1					1	2	1
Te						CO4	Explain the concepts of differential geometry and its role in modern Mathematics		3	2			2	2			1		2	1	1

		2 4	4		C01	To analyze different types of errors incumbent in any such numerical approximation.	1	1			1	1		1		1	2	
/sis					C02	Introduce the basic concepts of Numerical Mathematics to solve the problems arising in science and engineering etc.	1	2			2	1		2		1	3	1
Numerical Analysis	MMAT1-209			400	CO3	Compare the viability of different approaches to the numerical solution of problems arising in roots of solution of nonlinear equations, interpolation, numerical differentiation and integration	2	2		2	2	2		2		2	1	1
					CO4	Apply numerical methods for solving different types of problems related to initial and boundary value problems of ordinary differential equations etc.	1	1		1	1	1		3		2	1	2
al Analysis lab	1AT1-210	2 1	3		C01	Apply computer programming to solve algebraic equations, linear systems of equations, ordinary differential equation, eigenvalue problems & Carry out numerical differentiation, integration and interpolation.		1			1	1	1	1	2	2	1	2
Numerica	MM				C02	Utilize the symbolic tools of C++ language for solving given problem.		2			2	1	2	2	3	1	2	3
					CO3	Understand different modes of a numerical method in order to solve a given		2	2		2	2	3	2	1	1	2	2

						problem efficiently.													
					CO4	Develop understanding of numerical error and applicability of a particular method		1	2		1	1	3	3	2		2		2
		3 4	4 5		C01	Illustrate the concept of topological spaces and continuous functions, product topology and quotient topology.		1			2				2		1	1	3
Topology	MMATI-311			0 0	C02	Distinguish different examples of general, geometric and algebraic topology.			1	2		3	2		2		1	2	3
Topo	MMA			40	CO3	Understand several standard concepts of metric spaces and their properties like openness, closeness, completeness, compactness, and connectedness.			1		2	3					2	2	3
					C04	Identify the continuity of a function defined on metric spaces and homeomorphisms.	1			2		2			2	2	2	2	3
ch		3 4	4 5		C01	Construct an optimization problem from its physical interpretation to get its solution by using a suitable optimization technique.		1	3			2					2	1	1
Operations research	MMAT1-312			400	C02	Implement an appropriate optimization technique to solve a particular optimization problem.		1	1			2		2	1		1	2	1
Ó					CO3	Apply the knowledge of basic optimization techniques to get the best possible results from a set of several possible solutions of transportation						1		2	2		1	1	1

							and assignment problems.															
						CO4	Use the ideas of basic optimization techniques to do interesting research work on such types of optimization techniques.					1		2			1			1	1	3
		3	4	4 5		C01	To understand the concept of probability theory and statistics to solve industrial problems and Demonstrate of application of all Distributions in various domain		1	1		2	1	1				1	1	1		1
atistics	[3					C02	Study the various discrete and continuous distributions	2	2	1	2				1	2	1			1		1
Mathematical Statistics	MMAT1-313				400	CO3	Understand the concept and derivation of Chi square ,t and z distributions with its standard errors , mean and variance with their random sampling from normal distributions.	1	2		1			1	1	2			1	1		1
						CO4	Testing of hypothesis and its significance based on different distributions , transformation of correlation , regression and analysis of variance.	2	1		2	1	1		1	1				2		2
Mathematic al Methods	MMAT1- 314	3	4	4 5	400	C01	Understand the concept of functional and importance of their applications.		3		1	2				2				3		1

				C02	Find stationary values or paths and use of Euler- Lagrange equations.	3		2			1			2	1	1
				CO3	Understand the concept of integral equations and its types along with solutions by various methods.	2			1		3			2		2
				C04	Convert Differential equations into integral equations and vice versa.	2				2	2			2		2
	3	1 3	3	C01	Inculcate confidence to communicate effectively through soft skills and presentations.		1				3	1	2			1
ar-I	1-315		2	C02	Enhance the subject enrichment through the detail study of the topic to be presented	2	1						1	2	1	1
Seminar-I	MMAT1-315		00	CO3	Development of innovation and creativity through the selection and preparation of topic to be presented.	2	1				2		2			2
				CO4	Develop the ethical skills and team work responsibilities through the discussion of preparation of the presentations.			1			3	3	2	2		2
Fourier Analysis and Applications	mmAT1-356	4 4		C01	Concept of Fourier series and its importance in various fields	3		2	1	2	2			3	1	1

					C02	Understand the basic concepts of Fourier analysis.	2		3				1	1	3	2	1
					CO3	Understand the use of Fourier transforms and its applications to Boundary Value problems				3	2				3	2	
					CO4	Able to have knowledge about Discrete Fourier transforms Fast Fourier transforms and their use in technology	2		2	2					2	2	
	3	3	4 5		C01	Find numerical solutions of system of linear equations and check the accuracy of the solutions.	2			3	1	1	2		2	2	3
Advanced Numerical Analysis	MMAT1-357			400	C02	Compare the viability of different approaches to the numerical solution of problems arising in roots of solution of nonlinear equations, Finite difference methods	2		3				1	1	2	1	3
Advanced	2				CO3	Solve initial and boundary value problems in differential equations using numerical methods.				1	3				2	1	2
					CO4	Apply various numerical methods in real life problems like finite element method.	2		2	1			2		2	2	2
Number Theory	MMAT1-416	L	4 5	400	C01	Define divisibility, greatest common divisor, Prime numbers, congruence,				1	2					2	
Numbe	/WIM			4	C02	Understand the concept of Mobius function $\mu(n)$, The Euler totient function $\phi(n)$,	2	1			2	1					

				-	CO3	 Mangolt function Λ (n), Liouvilles function, The divisor function and prime-factorization. Derive Euler Summation formula, Dirichlet inversion formula, Mobius inversion formula. 	2				1	3						2
				-	CO4	Familiar with elementary theorems on Distribution of prime numbers,Dirichlet character.		1		1	2	2				2		2
		4 4	4 5		C01	Analyze the basic idea of finite dimensional normed spaces and subspaces and also to identify selfadjoint transformations	1	2	2	3				2		2	1	3
alysis	17			-	C02	Apply the spectral theorem and orthogonal decomposition of inner product spaces, the Jordan canonical form to solving systems of ordinary differential equations		1	2	2	3	2		2		2	1	3
Functional Analysis	MMAT1-417			400	C03	This course covers major theorems of Functional Analysis that have applications in Ordinary and Partial Differential Equations. Review of linear spaces and their norms. The Hahn- Banach, Baire Category, Uniform Boundedness Principle, Open Mapping and Closed Graph theorems.		2	1	2	3					2	1	2
				-	CO4	Apply various methods in real life problems	1		2		2	3		3	2	2	1	2

		4	4	4 5		CO1	Apply a range of techniques to solve first & second order partial differential equations.			1	2	3				2			2	2	2
lations						CO2	Model physical phenomena using partial differential equations such as the heat and wave equations.			1	2	2	3	2		2			2	2	3
Partial Differential Equations	MMAT1-418				400	CO3	Recognize the major classification of PDEs and the qualitative differences between the classes of equations.			1		2	3						2	1	2
Partia						CO4	Formulate mathematical models in the form of ordinary and partial differential equations to problems arising in physical, chemical and biological disciplines.	1			2		2	3		3	2		2	2	2
ar-II	1-419	4	1	3 0	2	C01	Inculcate confidence to communicate effectively through soft skills and presentations.			1					3		1	2			1
Seminar-II	MMAT1-419				002	CO2	Enhance the subject enrichment through the detail study of the topic to be presented.		2	1								1	2	1	1

						CO3	Development of innovation and creativity through the selection and preparation of topic to be presented.		2	1						2			2			2
						CO4	Develop the ethical skills and team work responsibilities through the discussion of preparation of the presentations.					1				3		3	2	2		2
		4	4	4 5		C01	Formulate mathematical models involving Queuing theory and inventory problems from its physical considerations.		1	3							1			1	1	1
ions Research	-458					C02	Apply the knowledge of mathematical techniques in order to get the solution of Queuing and inventory models.		2				2	1	2					1	2	2
Advanced Operations Research	MMAT1-458				4 0 0	CO3	Continue to acquire the knowledge and skills of mathematical modelling involving the problems of replacement and maintenance of equipment.		1				2		2					1	2	2
						CO4	Understand the formulation and use of networks for the solution of the maximal flow problem, the shortest-path problem and the minimal spanning tree problem.			3			2		2		1			1	2	1
Jomplex	-459	4	4	4 5		C01	Manipulate complex numbers in various representations.	2	3			1		2						3	2	
Advanced Complex Analysis	MMAT1-459				400	C02	Define and calculate limits and derivatives of functions of a complex variable. State and prove fundamental		3		2		2	2		2				2	1	

							results, including: Cauchy's Theorem and Cauchy's Integral Formula													
						CO3	Understanding Geometrical interpretation of Complex functions		2		3	1	2				2	2	1	
						CO4	Understand Fundamental Theorem of Algebra, Morera's Theorem and Liouville's Theorem and use them to prove related results.		2		3	1	2				2	2	2	
		4	4	4 5		C01	Apply the knowledge to evaluate fractional integrals of some common functions by understanding the Riemann-Liouville fractional integral	2	2				2			1	1	L	1	1
Fractional Calculus	MMAT1-460				0 0	C02	Define the Leibniz's formula of fractional derivatives and find the fractional derivatives of some common functions	2	2				1				1	1		1
Fraction	MMA				4	CO3	Develop the skills to solve the linear fractional differential equations using the Laplace transform.	2	1			2	2	1		2	1	1		1
						CO4	Introduce the Leibniz formula for Weyl fractional integral and investigate some applications of the fractional calculus to the real world.		2			1	2	2		2	1	L	1	1
Graph Theory	MMAT1-461	4	4	4 5	0 0	C01	Define the basic concept of graphs, its types and properties		2	3					2		3	3		
Graph	MMA				4	C02	Define the properties of trees, and to understand the concept of colouring and theory	3	1						2		2	2	2	1

						CO3	Understand Eulerian and Hamiltonian graphs with results.		2	3		2				1			1	2
						CO4	Understand the connectivity and paths, edges and cycles.		2	3			3			1			2	2
on Theory		4	4	45		C01	Understand the idea of Sampling and its types, to know the concept of Estimation Theory, Distributions and Sampling Tests- F- Test, Chi square test.				2	1	2		1				1	
Sampling Distribution and Estimation Theory	MMAT1-462				400	C02	Understand problem of statistical inference, problem of point estimation , Properties of point estimator such Consistency, Unbiasedness, Sufficiency		2	1	1		2							
ing Dist						CO3	Obtain minimum variance unbiased estimator.		2	1	1		2							2
Sampl						CO4	Obtain estimators using estimation methods such as Maximum likelihood& its properties, Minimum chi square, method of moments, method of scoring.				2	1		1	1	3			2	2
y and s	8	4	4	4 5		C01	Identify fuzzy sets and perform set operations.		2		2	2				1	1		3	1
zy Set Theory Applications	MMAT1-463				400	CO2	Classify the various operations on fuzzy sets	1	3			2				1	1		2	1
Fuzzy Set Theory and Applications	MM					CO3	Apply fuzzy logic in various real life situations.		2			3					1		1	2

						CO4	Decide the difference between crisps and fuzzy set theory.		2			1	1							2		2
less		4	3	4 0		CO1	Describe the fundamentals of Information Technology (IT) infrastructure components: hardware, software, and data communications systems.	1	1	2	1	1	1	2	2	3	3	3	2	1	2	2
ı in Busir	16					C02	Identify emerging technologies for use in business applications.	1	1	2	1	2	1	2	3	3	3	3	2	1	2	2
Computer Application in Business	MCAP0-F91				300	CO3	Demonstrate basic skills involving spreadsheet functions; create formulas, charts, and graphs; manipulate data; and generate reports	1	1	2	2	2	2	2	3	3	3	3	2	1	2	2
Ŭ						C04	Gain an education for office careers by focusing on developing communication skills as well as skills in office technology systems.	1	1	2	2	2	2	2	3	3	3	3	2	1	2	2
		4	3	4 0		C01	Understand role the ethics and values in Business.								3				1		1	
Business Ethics	MBAD0-F97				300	C02	Understand role the ethics in functioning of various departments of organization like Marketing, Finance & HR.								1				2	1		
Busi	MF					CO3	Analyze the ethics in society and Business.					1	1	1	2							
						CO4	Implement Individual & Group policies and laws of ethics.									2		1	2			

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB), INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) & 12 (B) of UGC; Member AIU)

Department: MATHEMATICS

MRSPTU main campus ,Bathinda

(2019)

Program: <u>M.Sc.</u>

Subject	S Code	Semester	Credit	Duration (Hrs)	LTP	Cos	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PSO1	PSO2	PSO3
gebra	-101					C01	Analyze& demonstrate different types of algebraic structures such as subgroups Normal subgroups, Quotient groups and Sylow theorems to solve different types of problems.	3	1			1	1			1				2	1	
Abstract Algebra	MMAT1-	1	4	6 0	400	C02	Understand proofs of some results such as Fundamental theorem of arithmetic, Solvable groups to understand and use the fundamental results in Algebra. and Jordan -holder theorem.	1	2			2	1			2				2	1	

COURSE ARTICULATION MATRIX (STUDY SCHEME: 2019)

					CO3	Understand the concept of Ring and subring, various type of ideals	2	2		2	2		2		2	1	1
					CO4	Apply various concepts of factorization domains in real life problems	1	1		1	1		2		2	1	
					CO1	Describe fundamental properties of the real numbers that lead to the formal development of real analysis.		2	3		1				2	1	2
Real Analysis	MMAT1-102	1	6		CO2	Demonstrate an understanding of limits and how they are used in sequences, series, Construct rigorous mathematical proofs of basic results in real analysis.			2	2				2	2	1	2
Real /	MMA		0	400	CO3	Understand Integrability and theorems on integrability. Recognize the difference between point wise and uniform convergence of a sequence of functions.			2		2			3	2	1	2
					CO4	Illustrate the effect of uniform convergence on the limit function with respect to continuity, differentiability, and integrability.	1		1					2	2	1	3

						C01	Use of the Lagrange's equation for deriving equation of motions		2		2	1	2	2		2	3	1
Mechanics	MMAT1-103	1	4	6 0	400	C02	Understand necessary conditions for the equilibrium of particles acted upon by various forces and learn the principle of virtual work for a system of coplanar forces acting on a rigid body.		1	3				1	1	2	1	1
						CO3	Deal with the kinematics and kinetics of the rectilinear and planar motions of a particle including the constrained oscillatory motions of particles.		1		2	3				2	3	2
						CO4	Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by Newton.		2	2	2			2		1	2	2
Differential equations	MMAT1-104	1	4	6 0	400	C01	Understand the concept of existence and uniqueness of solutions and also emphasizes the justification of methods for approximating solutions in pure and applied mathematics	2	3		2	1		1	1	1	1	

						C02	Understand partial differential equations of various type, their classification and solution	2	2	1	2					2				2	1	
						CO3	Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems	2	1		1									2	1	1
						CO4	Discuss about autonomous system , Phase plane and critical points etc. continuity,	1	2				1	3						1		1
and C		1	4	6 0		C01	Implement programs using C.	1	1	1	1	1	1	2	2	3	3	3	2	1	1	2
omputer ming	-193				(C02	Implement fundamental data structures in C.	1	1	1	1	2	2	2	3	3	3	3	2	1	2	2
Fundamentals of Computer and C Programming	MCAP0-193				400	CO3	Understand the fundamentals of hardware, software, and programming.	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2
Fundar						C04	Understand the logic building used in Programming	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2
and C		1	1	3 0		C01	Implement programs using C.	1	1	1	1	1	1	2	2	3	3	3	2	1	1	2
omputer ng Lab	-194					C02	Implement fundamental data structures in C.	1	1	1	1	2	2	2	3	3	3	3	2	1	2	2
nentals of Compute Programming Lab	MCAP0-194				0 0 2	£03	Write the programming solutions for solving various real-life problems	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2
Fundamentals of Computer and C Programming Lab						C04	Implement Programs with pointers and arrays, perform pointer arithmetic, and use the pre-processor.	1	1	1	2	2	2	2	3	3	3	3	2	1	2	2

		2 4	6 0	C01	Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.	3	1			1	1		1			2	1	
Advanced Algebra	MMAT1-205		400	C02	Prove the basic results of inner product space, field extensions, Finite fields and GaloisTheory.	1	2			2	1		2			2	1	1
Adva	W			CO3	Apply the concepts of Gauss Lemma, Einstein's irreducibility criterion, separable extensions etc.	2	2			2	2		2			2	1	1
				CO4	Understand the logic building used in Programming	1	1			1	1		2				1	2
tion		2 4	6 0	C01	Understand and implement the idea of Lebesgue Measure of Sets and Functions.		3				2	1				3		2
Measure Theory and Integration	[1-206		0	C02	Document insight in modern theory of integration as a tool in advanced analysis and in statistics		2		2	1						3	1	1
e Theory	MMAT1-206		400	CO3	Analyse the comparison of Riemann and lebesgue integral		1	2					2	2		2		1
Measur				CO4	ImplementLebesgueIntegrationandLebesgueDifferentiation,Fatou'sLemma & Theory on LP-Space		2			3		1				2		1

		2	6 0		CO1	Understand the concept and consequences of analyticity and Cauchy-Riemann equations and knowing basic difference between real & complex calculus and conformal mappings.		3		2		3	3		1	3	1	
Complex Analysis	MMAT1-207			0 0	C02	Understanding Geometrical interpretation of Complex functions.	1	2	2	2	3	2				3	2	1
Comple	MMA			4	CO3	Evaluation of contour integrals directly by the use of Cauchy's theorem and Cauchy's integral formula.			2	1	3	2		3		3	1	1
					C04	Represent functions as Taylor, power and Laurent series, classify singularities and poles, find residue and complex integrals using residue theorem.		2			1			2		3	2	
ametry		2	6 0		C01	Explain the basic concepts of tensors, Understand role of tensors in differential geometry.		1			2				1	1	2	
ferential Geo	MMAT1-208			400	CO2	Learn various properties of curves including Frenet–Serret formulae and their applications		2	3			2 1	1			2	1	
Tensor and Differential Geometry	MM			7	CO3	Know the Interpretation of the curvature tensor, Geodesic curvature, Gauss and Weingarten formulae		3				2 1				1	2	1
Ľ					CO4	Explain the concepts of differential geometry and its role in modern Mathematics		3	2			2 2			1	2	1	1

		2	4	6 0		C01	To analyze different types of errors incumbent in any such numerical approximation.	1	1			1	1		1		1	2	
/sis					-	C02	Introduce the basic concepts of Numerical Mathematics to solve the problems arising in science and engineering etc.	1	2			2	1		2		1	3	1
Numerical Analysis	MMAT1-209				400	CO3	Compare the viability of different approaches to the numerical solution of problems arising in roots of solution of nonlinear equations, interpolation, numerical differentiation and integration	2	2		2	2	2		2		2	1	1
					-	CO4	Apply numerical methods for solving different types of problems related to initial and boundary value problems of ordinary differential equations etc.	1	1		1	1	1		3		2	1	2
al Analysis lab	MMAT1-210	2	1	3 0	002	C01	Apply computer programming to solve algebraic equations, linear systems of equations, ordinary differential equation, eigenvalue problems & Carry out numerical differentiation, integration and interpolation.		1			1	1	1	1	2	2	1	2
Numerica	MM					C02	Utilize the symbolic tools of C++ language for solving given problem.		2			2	1	2	2	3	1	2	3
						CO3	Understand different modes of a numerical method in order to solve a given		2	2		2	2	3	2	1	1	2	2

							problem efficiently.														
						CO4	Develop understanding of numerical error and applicability of a particular method		1	2		1	1	3		3	2		2		2
		3	4	6 0		CO1	Illustrate the concept of topological spaces and continuous functions, product topology and quotient topology.		1			2					2		1	1	3
logy	[]-311				0 0	C02	Distinguish different examples of general, geometric and algebraic topology.			1	2		3	2			2		1	2	3
Topology	MMAT1-31				4 0	CO3	Understand several standard concepts of metric spaces and their properties like openness, closeness, completeness, compactness, and connectedness.			1		2	3						2	2	3
						C04	Identify the continuity of a function defined on metric spaces and homeomorphisms.	1			2		2				2	2	2	2	3
ch		3	4	6 0		C01	Construct an optimization problem from its physical interpretation to get its solution by using a suitable optimization technique.		1	3			2						2	1	1
Operations research	MMAT1-312				400	C02	Implement an appropriate optimization technique to solve a particular optimization problem.		1	1			2		2		1		1	2	1
OF						CO3	Apply the knowledge of basic optimization techniques to get the best possible results from a set of several possible solutions of transportation						1		2		2		1	1	1

							and assignment problems.															
						CO4	Use the ideas of basic optimization techniques to do interesting research work on such types of optimization techniques.					1		2			1			1	1	3
		3	4	6 0		C01	To understand the concept of probability theory and statistics to solve industrial problems and Demonstrate of application of all Distributions in various domain		1	1		2	1	1				1	1	1		1
atistics	[3					C02	Study the various discrete and continuous distributions	2	2	1	2				1	2	1			1		1
Mathematical Statistics	MMAT1-313				400	CO3	Understand the concept and derivation of Chi square ,t and z distributions with its standard errors , mean and variance with their random sampling from normal distributions.	1	2		1			1	1	2			1	1		1
						CO4	Testing of hypothesis and its significance based on different distributions , transformation of correlation , regression and analysis of variance.	2	1		2	1	1		1	1				2		2
Mathematic al Methods	MMAT1- 314	3	4	6 0	400	C01	Understand the concept of functional and importance of their applications.		3		1	2				2				3		1

						C02	Find stationary values or paths and use of Euler- Lagrange equations.		3			2			1				2	1	1
						CO3	Understand the concept of integral equations and its types along with solutions by various methods.		2				1		3				2		2
						C04	ConvertDifferentialequationsintointegralequationsandviceversa.		2					2	2				2		2
		3	1	3 0		CO1	Inculcate confidence to communicate effectively through soft skills and presentations.			1					3		1	2			1
ar-I	1-315				2	C02	Enhance the subject enrichment through the detail study of the topic to be presented		2	1								1	2	1	1
Seminar-I	MMAT1-315				00	CO3	Development of innovation and creativity through the selection and preparation of topic to be presented.		2	1					2			2			2
						CO4	Develop the ethical skills and team work responsibilities through the discussion of preparation of the presentations.					1			3		3	2	2		2
sis and ons	9	3	4	6 0		C01	Concept of Fourier series and its importance in various fields		3			2	1	2	2				3	1	1
rier Analysis Applications	MMAT1-356				400	C02	Understand the basic concepts of Fourier analysis.		2		3				1	1			3	2	1
Fourier Analy Applicatio	MM					CO3	Understand the use of Fourier transforms and its applications to Boundary Value problems	2				3	2						3	2	

						CO4	Able to have knowledge about Discrete Fourier transforms Fast Fourier transforms and their use in technology	2		2	2						2	2	
		3	4	6 0		C01	Find numerical solutions of system of linear equations and check the accuracy of the solutions.	2			3	1	1	2			2	2	3
Advanced Numerical Analysis	MMAT1-357				400	C02	Compare the viability of different approaches to the numerical solution of problems arising in roots of solution of nonlinear equations, Finite difference methods	2		3				1	1		2	1	3
Advanced	4					CO3	Solve initial and boundary value problems in differential equations using numerical methods.				1	3					2	1	2
						CO4	Apply various numerical methods in real life problems like finite element method.	2		2	1			2			2	2	2
		4	4	6 0		C01	Define divisibility, greatest common divisor, Prime numbers, congruence,				1	2						2	
Number Theory	MMAT1-416				400	C02	Understand the concept of Mobius function $\mu(n)$, The Euler totient function $\phi(n)$, Mangolt function Λ (n), Liouvilles function, The divisor function and prime- factorization.	2	1			2	1						
						CO3	Derive Euler Summation formula, Dirichlet inversion formula, Mobius inversion formula.	2				1	3						2

							1	1	1 1	-		1	-	1						
						CO4	Familiar with elementary theorems on Distribution of prime numbers,Dirichlet character.		1		1	2	2					2		2
		4	4	6 0		C01	Analyze the basic idea of finite dimensional normed spaces and subspaces and also to identify selfadjoint transformations	1	2	2	3				2			2	1	3
alysis	17				_	C02	Apply the spectral theorem and orthogonal decomposition of inner product spaces, the Jordan canonical form to solving systems of ordinary differential equations		1	2	2	3	2		2			2	1	3
Functional Analysis	MMAT1-417				400	CO3	This course covers major theorems of Functional Analysis that have applications in Ordinary and Partial Differential Equations. Review of linear spaces and their norms. The Hahn- Banach, Baire Category, Uniform Boundedness Principle, Open Mapping and Closed Graph theorems.		2	1	2	3						2	1	2
						CO4	Apply various methods in real life problems	1		2		2	3		3	2	2	2	1	2
ferential Equations	MMAT1-418	4	4	6 0	400	C01	Apply a range of techniques to solve first & second order partial differential equations.		1	2	3				2			2	2	2
Partial Differential	M					C02	Model physical phenomena using partial differential equations such as the heat and wave equations.		1	2	2	3	2		2			2	2	3

						CO3	Recognize the major classification of PDEs and the qualitative differences between the classes of equations.			1		2	3						2	1	2
						CO4	Formulate mathematical models in the form of ordinary and partial differential equations to problems arising in physical, chemical and biological disciplines.	1			2		2	3		3	2		2	2	2
		4	1	3 0		CO1	Inculcate confidence to communicate effectively through soft skills and presentations.			1					3		1	2			1
lar-II	1-419				12	C02	Enhance the subject enrichment through the detail study of the topic to be presented.		2	1								1	2	1	1
Seminar-II	MMAT1-419				00	CO3	Development of innovation and creativity through the selection and preparation of topic to be presented.		2	1					2			2			2
						C04	Develop the ethical skills and team work responsibilities through the discussion of preparation of the presentations.					1			3		3	2	2		2

		4	4 6 0		C01	Formulate mathematical models involving Queuing theory and inventory problems from its physical considerations.		1	3							1	1	1	1
ions Research	-458				C02	Apply the knowledge of mathematical techniques in order to get the solution of Queuing and inventory models.		2				2	1	2			1	2	2
Advanced Operations Research	MMAT1-458			400	CO3	Continue to acquire the knowledge and skills of mathematical modelling involving the problems of replacement and maintenance of equipment.		1				2		2			1	2	2
					C04	Understand the formulation and use of networks for the solution of the maximal flow problem, the shortest-path problem and the minimal spanning tree problem.			3			2		2		1	1	2	1
		4	4 6 0		C01	Manipulate complex numbers in various representations.	2	3			1		2				3	2	
ed Complex Analysis	MMAT1-459			400	C02	Define and calculate limits and derivatives of functions of a complex variable. State and prove fundamental results, including: Cauchy's Theorem and Cauchy's Integral Formula		3		2		2	2		2		2	1	
Advanced	Γ				CO3	Understanding Geometrical interpretation of Complex functions		2			3	1	2				2	1	
					CO4	Understand Fundamental Theorem of Algebra, Morera's Theorem and		2			3	1	2				2	2	

							Liouville's Theorem and use them to prove related results.													
		4	4	6 0		C01	Apply the knowledge to evaluate fractional integrals of some common functions by understanding the Riemann-Liouville fractional integral	2	2					2			1	1	1	1
Fractional Calculus	MMAT1-460				0 0	C02	Define the Leibniz's formula of fractional derivatives and find the fractional derivatives of some common functions	2	2					1				1		1
Fraction	MMA				4	CO3	Develop the skills to solve the linear fractional differential equations using the Laplace transform.	2	1				2	2	1		2	1		1
						CO4	Introduce the Leibniz formula for Weyl fractional integral and investigate some applications of the fractional calculus to the real world.		2				1	2	2		2	1	1	1
		4	4	6 0		C01	Define the basic concept of graphs, its types and properties		2	3						2		3		
Graph Theory	MMAT1-461				0 0	C02	Define the properties of trees, and to understand the concept of colouring and theory	3	1							2		2	2	1
Graph	MMA'				4 (CO3	Understand Eulerian and Hamiltonian graphs with results.		2	3		2				1		1		2
						C04	Understand the connectivity and paths, edges and cycles.		2	3			3			1		2		2
Sampling Distributio n and Estimation	MMAT1- 462	4	4	6 0	400	C01	Understand the idea of Sampling and its types, to know the concept of Estimation Theory,				2	1	2		1			1		

							Distributions and Sampling Tests- F- Test, Chi square test.															
						C02	Understand problem of statistical inference, problem of point estimation , Properties of point estimator such Consistency, Unbiasedness, Sufficiency		2	1	1		2									
						CO3	Obtain minimum variance unbiased estimator.		2	1	1		2									2
						CO4	Obtain estimators using estimation methods such as Maximum likelihood& its properties, Minimum chi square, method of moments, method of scoring.				2	1		1	1	3				2		2
cations		4	4	6 0		C01	Identify fuzzy sets and perform set operations.		2		2	2				1	1			3		1
nd Appli	-463					C02	Classify the various operations on fuzzy sets	1	3			2				1	1			2		1
et Theory a	MMAT1-463				400	CO3	Apply fuzzy logic in various real life situations.		2			3					1			1		2
Fuzzy S						CO4	Decide the difference between crisps and fuzzy set theory.		2			1	1							2		2
Computer Application Fuzzy Set Theory and Applications in Business	MCAP0-F91	4	3	4 0	300	C01	Describe the fundamentals of Information Technology (IT) infrastructure components: hardware, software, and data communications systems.	1	1	2	1	1	1	2	2	3	3	3	2	1	2	2

						C02	Identify emerging technologies for use in business applications.	1	1	2	1	2	1	2	3	3	3	3	2	1	2	2
						CO3	Demonstrate basic skills involving spreadsheet functions; create formulas, charts, and graphs; manipulate data; and generate reports	1	1	2	2	2	2	2	3	3	3	3	2	1	2	2
						C04	Gain an education for office careers by focusing on developing communication skills as well as skills in office technology systems.	1	1	2	2	2	2	2	3	3	3	3	2	1	2	2
		4	3	4 0		C01	Understand role the ethics and values in Business.								3				1		1	
Business Ethics	MBAD0-F97				300	CO2	Understand role the ethics in functioning of various departments of organization like Marketing, Finance & HR.								1				2	1		
Bus	MI					CO3	Analyze the ethics in society and Business.					1	1	1	2							
						C04	Implement Individual & Group policies and laws of ethics.									2		1	2			<u> </u>

Enter Correction levels 1, 2 or 3 as defined below:

1. Slight (Low) - upto 30% 2. Moderate (Medium) –above 30% andupto70%

3. Substantial (High) – above 70%