MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY, BATHINDA

Entrance Exam. For Ph. D. (Physics)

••	the magnetic moment associated with th	e first (orbit in hydrogen atom is given by:					
	(a) <u>h</u>	(b)	$4\pi m$					
	$4\pi me$	(-)	he					
	(c) eh	(d)	emh					
	$4\pi m$	(u)	$\frac{6\pi\Omega}{4\pi}$					
2.			4π					
	In a simple cubic lattice $d_{100}: d_{110}: d_1$ (a) 6:3:2		-					
			6: 3: √2					
,	(c) √6:√3:√2	(d)	$\sqrt{6}$: $\sqrt{3}$: 2					
3.	X-rays are produced when an element of high atomic weight is bombarded by high							
	energy;							
	(a) Protons		Photons					
	(c) Neutrons	(d)	Electrons					
4.	E_F and E_f are the Fermi level of sodium a	E_F and E_f are the Fermi level of sodium at 0K and 10000 K. E_F for sodium is 3 eV,						
	then $\frac{E_f}{E_F}$ is:							
	(a) 0.93	(h)	1.02					
	(c) 0.02	(b) (d)	1.93 21					
5.								
		If $\psi_{(111)}$ and $\psi_{(112)}$ are the wave functions of the electrons in the two energy states						
	(111) and (112) respectively in a cubical b	ox of si	de 'a', then $\frac{\psi(111)}{\psi(12)}$ is:					
	(a) $\frac{Sin\frac{\pi z}{a}}{Sin\frac{2\pi z}{a}}$ (c) $\frac{Sin\frac{\pi x}{a}}{Sin\frac{\pi y}{a}}$	(b)	$2\pi z$					
	$\frac{3ma}{a}$	(-)	$\frac{\sin\frac{2\pi z}{a}}{\sin\frac{\pi z}{a}}$					
	$Sin\frac{2\pi z}{a}$		$Sin^{\frac{\pi z}{\omega}}$					
	(c) $c_{in} \pi x$							
	$\frac{\sin \overline{a}}{a}$	(4)	$Sin\frac{2Ny}{a}$					
	$Sin\frac{\pi y}{\pi}$		$\frac{\sin\frac{2\pi y}{a}}{\sin\frac{2\pi z}{a}}$					
,			u					
6.	If the Debye's temperature of a metal is 450 K, the Debye's frequency is:							
	(a) 10^{13} Hz (c) 10^{23} Hz	` '	10 ³ Hz 10 ³³ Hz					
7		(d)	10-5 FIZ					
7.	Superconductivity results due to:	(b)	Crystal atmostura having an atmost					
	 (a) Crystal structure having infinite atomic vibrations at 0K. 	(0)	Crystal structure having no atomic vibrations at 0K.					
	(c) All electrons interacting in the	(d)	All electrons having Fermi energy at					
	superconducting state.	(4)	0K.					
8.	At Neel temperature:		ore.					
٥.	(a) Permeability is minimum	(b)	Permeability is maximum					
	(c) Susceptibility is minimum	(d)	Susceptibility is maximum					
9.	The orientational polarisability per molecular							
•	(a) T	(b)	T^2					
		(d)	1					
	(c) $\frac{1}{T}$	(4)	$\frac{1}{T^2}$					
	I		1 -					
	*							

10.	Piezoelectric effect is the production of elec-	ctricit	y by:				
	(a) Chemical effect		Pressure				
	(c) Temperature	(d)	Varying electric field				
11.	He-Ne gas laser is a:	` '	, ,				
	(a) Two-level laser	(b)	Three-level laser				
	(c) Four-level laser		None of these				
12.	Optical fibre communication systems posse						
	telephone cables?						
	(a) Longer life	(b)	Negligible cross talk				
			All of these				
13.	Michelson-Morely experiment works on _						
	(a) Polarization of light	(b)	Interference of light				
	(c) Diffraction of light		All of these				
14.	Dual nature (particle and wave) of matter was proposed by:						
	(a) de-Broglie		Planck				
	(c) Einstein	, ,	Newton				
15.	If $\psi_{(x,y,z,t)}$ represent wave function associa						
	then $\left \psi_{(x,y,z,t)}\right ^2$ represents:						
	(a) Intensity	(b)	Amplitude				
	(c) Probability density	(d)	None of these				
16.	(c) Probability density The surface to volume ratio is (a) Very large	for nanoparticles?					
	(a) Very large	(b)	Very less				
	(c) Moderate		None of these				
17.	By reducing the size of metal particles form	n bulk	to nano, the energy bands become:				
	(a) Narrower		Remains same				
	(c) Wider		None of these				
18.	A radioactive sample has a half-life of 5.0 min. What fraction of the sample is left						
	after 20 min?	<i>(</i> L)	1/4				
	(a) 1/2		1/4				
	(c) 1/8		1/16				
19.	The Boolean function A + BC is a reduced (a) AB + BC	iorm	01				
	(-)	(a)	(A + C)B				
20.	From the given truth table,		Inputs Output				
	determine the standard SOP		A B C X				
	expression for output X=?.		0 0 0 0				
			0 0 1 1				
	,		0 1 0 0				
			0 1 1 1				
			1 0 0 0				
			1 0 1 0				
			1 1 0 1				
		(1.)					
	(a) $X = \overline{A}.\overline{B}.\overline{C} + A.B.C + A.B.\overline{C}$	(b)	$X = \overline{A}.\overline{B}.\overline{C} + A.\overline{B}.C + A.\overline{B}.\overline{C}$				
	(c) $X = \overline{A}.B.\overline{C} + A.B.C + A.B.\overline{C}$	(d)	$X = \bar{A}.\bar{B}.C + \bar{A}.B.C + A.B.\bar{C}$				
21.	The basic gate of the TTL logic family is _		?				

(a) NAND (c) NOR The circuit of the given the figure realizes the function?

(a) $(\bar{A} + \bar{B})C + \bar{D}\bar{E}$

(b) $\bar{A} + \bar{B} + \bar{C} + \bar{D} + \bar{E}$

(c) AB + C + DE

- (d) AB + C(D + E)
- 23. A JK flip flop has t_{pd} = 12 ns. The largest modulus of a ripple counter using these flip flops and operating at 10 MHz is?
 - (a) 16

(b) 64

(c) 128

(d) 256

(b) NOT

(d) None of these

- 24. What should be the radius of the 3rd half period zone of a zone plate of focal length 1.5 m, illuminated by a light of wavelength 593 nm?
 - (a) 1.53 mm

(b) 1.63 mm

(c) 1.73 mm

- (d) 1.83 mm
- 25. Which of the following is essential for observing diffractions?
 - (a) Two coherent sources

(b) A screen

(c) A narrow slit

- (d) White Light
- 26. The refractive index for a glass slab is 1.732. What should be the Brewster angle for
 - (a) 30°

(b) 60°

(c) 90°

- (d) 120°
- 27. Three particles are distributed in four compartments of equal size. The probability if the microstate of the system will be:
 - 1 $\overline{2^2}$

1 34

1 (c)

(d) Infinite

- 28. The spin of a photon is:
 - (a) 0

h (b) 2π

(d) None of these

- 29. Neutrons has:
 - (a) Positive magnetic moment
- (b) Negative magnetic moment

(c) Zero magnetic moment

- (d) None of these
- 30. For secular equilibrium between two radio-active nuclides with half life periods as T_1 and T_2 ,
 - (a) $T_1 = T_2$

(b) $T_1 \geq T_2$

(c) $T_1 \ll T_2$

(d) $T_1 \gg T_2$

- 31. One barn is equal to:
 - (a) $10^{-28} m$

(b) $10^{-28} m^2$

32.	(c) $10^{-23} m$	nd rows of a unitary ma	` ,	10 ⁻²³ m ²	
32.	(a) Unitary ma		(b)	Orthonormal vectors	
	(c) Unitary tra		. ,	Ket space	
33.	•	of an electron, the operat	, ,	•	
33.		n an electron, the operat			
	(a) $\frac{1}{2}$, $\frac{1}{2}$		(0)	$\frac{1}{2}$, - $\frac{3}{2}$	
	(c) $\frac{1}{2}$, 1		(d)	1,- 1/2	
	72, 1			-, 72	
34.	The variation 1	principle is particularly o	effective w	hen estimating the energy of:	
	(a) The highes	st state of any symmetry	(b)	The lowest state of any symmetry	
	(c) Any state of	of all symmetry	(d)	None of these	
35.	35. Given that $\vec{A} \times \vec{B} = 0$ and $\vec{A} \cdot \vec{B} = -AB$, then the angle between \vec{A} and \vec{B} is:				
	(a) 0		(b)	60°	
	(c) 90°		` '	180°	
36	In which plane	does the vector $\vec{A}(\vec{B} \times \vec{b})$	\vec{C}) lies in:		
		aining \vec{A} and \vec{B}	(b)	Plane containing \vec{A} and \vec{C}	
		aining \vec{B} and \vec{C}	(d)	None of these	
37.					
57.	(a) 0	e of curl of a vector field	(b)	1	
			(d)	Infinite	
	(c) $\frac{\pi}{2}$				
38.	If the vector fie	eld $ \overrightarrow{B} $ is solenoidal, then:		→ → -	
	(a)	$\vec{\mathrm{B}}=0$	(b)	$\vec{\nabla} \cdot \vec{B} = 0$	
	(c)	$\vec{\nabla} \times \vec{B} = 0$	(d)	None of these	
39.	In which of the	e following case with a ba	r magnet	and solenoid no induced e.m.f is	
	produced:				
	(a) When mag	net is inserted fastly		When magnet is kept out fastly	
		s of the solenoidal has bee			
		vard the stationary magnet	•	solenoidal w.r.t magnet is zero	
	fastly				
40.	Del (∇) operato	or is:	(L)	A vector quantity	
	(a) A scalar qu	iantity		A vector quantity None of these	
	(c) May be sca	alar or vector quantity	(u)	None of these	

ciaid & Physics

ANSWERS

1	C	11	C	21	A	31	В
2	С	12	D	22	A	32	В
3	D	13	В	23	D	33	- C
4	A	14	A	24	В	34	В
5	A	15	С	25	C	35	D
6	A	16	A	26	В	36	C
7	В	17	A	27	C	37	A
8	D	18	C	28	В	38	В
9	C	19	В	29	l A	39	D
10	B	20	D	30	D	40	В