MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY, BATHINDA ANSWER KEY ELECTRICAL ENGINEERING

1. c 2.d 3.d 4.a 5.c 6.d 7.d 8.d 9.d 10.b 11. b 12.b 13.c 14. b 15.a 16.c

17. d 18.d 19.b

20.c 21.a

22.b 23.b

24.c 25.c

26.b

27.b 28.d

29.a

30.d 31.b

32.b

33.b

34.a

35.a

36.b

37.b

38.c 39.d

40.b

Controller of Examinations MRSPTU, Bathinda

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY, BATHINDA Ph.D. Entrance Examination of ELECTRICAL ENGINEERING

- O1. The Eigen values of the matrix
 - a) are 1 and -4
 - b) are -1 and 2
 - **c)** are 0 and 5
 - d) cannot be determined
- Q2. The optimum value of function $f(x) = x^2-4x+2$ is
 - a) 2(maximum)
 - b) 2(minimum)
 - c) -2(maximum)
 - d)-2(minimum)
- Q3. A class of first year B.Tech students is composed of four batches A,B,C and D, each consisting of 30 students. It is found that the sessional marks of students in Basic Electrical Engineering in batch C have a mean of 6.6 and standard deviation of 2.3. The mean and standard deviation of marks for the entire class are 5.5 and 4.2 respectively. It is decided by course instructor to normalize the marks of the students of all batches to have the same mean and standard deviation as that of entire class. Due to this, the marks of the student in batch C are changed from 8.5 to
 - a) 6.0
- b) 7.0
- c) 8.0
- d) 9.0
- Q4. If f(t) = F(s), then f(t-T) is
 - a) $e^{sT}F(S)$
 - b) $e^{-sT}F(S)$
 - c) $F(s)/1+e^{sT}$
 - **d)** $F(s)/1-e^{-sT}$
- O5. Superposition Theorem is not applicable to
 - a) Voltage Calculations
 - b) Bilateral Elements
 - c) Power Calculations
 - d) Passive elements
- Q6. How many 200W/220V incandescent lamps connected in series would consume same total power as a single 100W/220V incandescent lamp?
 - a) not possible
- b) 4

c) 3

- d) 2
- Q7. Which of the following are conditions for a two port network to be reciprocal one?
- 1. $Z_{12}=Z_{21}$ 2. $Y_{12}=Y_{21}$ 3. $h_{12}=-h_{21}$

Select the correct consitions from the code given below:

- a) Only 1 and 2
- b) Only 2 and 3
- c) Only 1 and 3
- d) 1.2 and 3

Q8. Which of the following relations for power is not correct?
a) P=VIcos\(\phi\) b) P= Re part of [VI*]
e) $P = Re part of [V*I]$ d) $P = VIsin \phi$
Q9. What is the effect of inductance of a coil on a constant direct current?
a) It decreases the current
b) It increase the current
c) It causes higher voltage drop
d) It does not effect the constant direct current
O10. A uniform plane wave will be a
Q10. A uniform plane wave will have components of
a) E and H is zero in direction perpendicular to the direction of propagation
b) E and H exists only in direction perpendicular to the direction of propagation
c) E exists in direction of propagation, while H is zero d) both E and H exist in all directions
d) both E and IT exist in all directions
Q11. Surface integral of electric field intensity is
a) electrical charge
b) net flux emanating from the surface
c) differential of volume flux
d) Both a and b
d) Bour a and o
Q12. Select the equation which is not Maxwell
a) D=EE b) E=ED
c) $J=\sigma E$ d) $B=\mu H$
013 In a 100kVA (100/220V 50Uz 14 topoformar with 2000 topozo de la contra de OCT and
Q13. In a 100kVA 1100/220V 50Hz 1\phi transformer with 2000 turns on the h.v. side, the OCT result gives 200V, 91A, 5kW on LV side. The core loss component of current is approximately:
a) 9.1A b) 22.7A
a) 5.1A c) 25A d) 91A
c) 25A
Q14. Wave winding is employed in a d.c.machine of
a) High current and low voltage rating
b) Low current and high voltage rating
c) High current and high voltage rating
d) low current and low voltage rating
a) low eattent and low voltage rading
Q15. A 4 pole 50Hz synchronous generator has 48 slots in which a double layer winding is housed.
Each coil has 10 turns and is short pitched by an angle of 36° electrical. The fundamental flux per
pole is 0.25Wb. The line to line induced emf (in volts) for a three phase connection is
approximately
a) 1143 b) 1332
c) 1617 d) 1791
G) 1771
Q16. A three phase 4 pole self excited induction generator is feeding power to a load at a frequency f ₁ .
If the load is partially removed, the frequency becomes f_2 . If the speed of generator is maintained
at 1500rpm in both cases then
a) Both f_1 , $f_2 > 50$ Hz and $f_1 > f_2$
b) f ₁ <50Hz and f ₂ >50Hz
c) f_1 , $f_2 < 50$ Hz and $f_2 > f_1$
-1 -11 -2

Q17.For a given ba What will be the	se voltage and base volt-amp, the per un	it impedance value of an element is X
a) 4X	b) 2X	ge and von-amp bases are doubled?
e) X	d) 0.5X	
Q18. In an interes	onnected power system the most suitable	o mouves wheat to the state of the
conditions is	power system the most suitable	e power plant to meet the peak load
a) Hydel	b) Nuclear	
c) Steam	d) Pumped Storage	
Q19. The power trans	smission canability of binder lines	
my truit of 5 pilas	C SHIPTE CITCHII LINA	eximately
b) same as that o	f 3 phase single girouit line	
c) Twice that of	3 phase single circuit line	
d) Thrice that of	3 phase single circuit line	
1. The neutral gr	ounding impedance 7	
2. For faults on to	ransmission lines 3, phase for $k = 1$	ro sequence equivalent circuit.
		ected by method of neutral grounding.
	the correct:	
c) Only land 3		
)21 The z 4		
a) y(n) is non cab) y(n) is casual	sual with finite support	6z2+2z3. It is applied to a system with ch of the following is true?
c) $v(n)=0$: $ n >3$		
d) Re $[Y(z)]_{z=e^{j\Theta}}$	= -Re[Y(z)] _{z=e} · $^{j\Theta}$; Im[Y(z)] _{z=e} $^{j\Theta}$ = -Im[Y(z)] _{z=e} - ^{jΘ} ; -Π≤Θ≤Π
sin(1111), the roth	t-1/2) where $rect(x)=1$ for $-1/2 \le x \le 1/2$ ier transform of $x(t)+x(-t)$ will be given by	and zero otherwise. Then if sinc(x)=
	(a.)	
	<u>w</u>)	
	2	
	<u>0</u>)	
a) cach system in t	he caseage is many family cashal and inetal	hle
a) at least one syst	em is unstable and at least one system is ca	sual
d) the majority	em is casual and all systems are unstable	
u) the majority are	unstable and the majority are casual.	
	a) 4X e) X Q18. In an interest conditions is a) Hydel e) Steam Q19. The power trans a) Half of 3 phase b) same as that of d) Thrice that of d) Thrice that of d) Thrice that of following the following transfer function is a) Consider the following transfer function is a) Only 1 and 2 c) Only 1 and 2 c) Only 1 and 3 Q21. The z-transform transfer function is a) y(n) is non case b) y(n) is casual c) y(n)=0; n >3 d) Re [Y(z)]z=e ^{jO} Q22. Let x(t)= rect (\sin(\frac{\sin(\frac{\sin(\frac{\sin(\frac{\sin(\sin(\sin(\sin(\sin(\sin(\sin(\sin(c) X d) 0.5X Q18. In an interconnected power system the most suitable conditions is a) Hydel c) Steam d) Pumped Storage Q19. The power transmission capability of bipolar lines is approact a) Half of 3 phase single circuit line b) same as that of 3 phase single circuit line c) Twice that of 3 phase single circuit line d) Thrice that of 3 phase single circuit line d) Thrice that of 3 phase single circuit line Q20. Consider the following statements regarding fault analysis 1. The neutral grounding impedance Z _n appears as 3Z _n in ze 2. For faults on transmission lines,3 phase fault is the least s 3. The positive and negative sequences networks are not affer which of these statements are correct? a) Only 1 and 2 b) Only 2 and 3 c) Only 1 and 3 d) 1,2 and 3 Q21. The z- transform of a signal x[n] is given by 4z-3+3z-1+2-transfer function H (z)= 3z-1-2. Let the output be y (n). Which all y(n) is casual with infinite support b) y(n) is casual with infinite support c) y(n)=0; n >3 d) Re [Y(z)] _{z=e^{jO}} = -Re[Y(z)] _{z=e^{jO}} ; Im[Y(z)] _{z=e^{jO}} = -Im[Y(z)] Q22. Let x(t)= rect (t-1/2) where rect(x)= 1 for -1/2≤x≤1/2 sin(IIx), the Fourier transform of x(t)+x(-t) will be given by Ix a) sinc (ω) 2Π b) 2sinc (ω) cos(ω) 2Π c) 2sinc (ω)cos(ω) 2Π c) 2sinc (ω)cos(ω)

Q25. At an industrial sub-state load factor at 0.97 lagging	ation with a 4MW load, a capacitor of 2MVAR is installed to maintain the ng. If the capacitor goes out of service, the load power factor becomes
a) 0.85 lag	b) 1.00
c) 0.80lag	d) 0.90lag
2. AC line inductor 3. Reactive Power source 4. distance relays on DC 5. Series capacitance on a) Only 1 and 2 b) Only 1 and 3 c) Only 2 and 4 d) Only 4 and 5	C line AC lines
Q27. The neutral of 10MVA relay is set to operate a winding is protected? a) 85%	A, 11kV alternator is earthed through a resistance of 50hms. The earth fault at 0.75A. The CT's have a ratio of 1000/5. what percentage of alternator b) 88.2%
c) 15%	d) 11.8%
Q28. The parameters of tran and mutual reactance reactance X ₀ respectively a) 0.3, 0.2 b) 0.5, 0.2 c) 0.5, 0.6 d) 0.3, 0.6	isposed overhead transmission line are given as: self reactance X_s =0.4 Ω /km X_m = 0.1 Ω /km. The positive sequence reactance X_1 and zero sequence ly in Ω /km are
Q29. The effect of stray ma when the operating field a) perpendicular	agnetic fields on the actuating torque of a portable instrument is maximum d of the instrument and stray fields are
b) parallel	
c) inclined at 60°	
d) inclined at 30°	
Q30. An average reading dig the time axis. For the sa a) $20/\sqrt{3}$ b) $10/\sqrt{3}$ c) $20\sqrt{3}$ d) $10\sqrt{3}$	gital multimeter reads 10V when fed with a triangular wave, symetric about time input an rms reading meter will read:

Q24. If u(t), r(t) denote the unit step and unit ramp functions respectively and u(t)*r(t) their

convolution, then the function u(t+1)*r(t-2) is given by:

a) (1/2)(t-1)(t-2)b) (1/2)(t-1)u(t-2)c) $(1/2)(t-1)^2 u(t-1)$ d) None of the above

O31. A 500/5	A, 50Hz current transformer	hae a har naimana. T	he secondary burden is a pure resist	ance
\sim of 1Ω an	d it draws a current of 5A. I	If the magnetic core	requires 250AT for magnetization	the
percentag	e error is	in the magnetic core	requires 250711 for magnetization	,
a) 10.56				
b) -10.56				
c) 11.80				
d) -11.80				

- Q32. The simultaneous application of signals x(t) and y(t) to the horizontal and vertical plates respectively of an oscilloscope, produces a vertical figure of 8 display. If P and Q are constants and $x(t) = P\sin(4t+30)$, then y(t) is equal to
 - a) Qsin (4t-30)
 - b) $Q\sin(2t+15)$
 - e) Qsin(8t+60)
 - d) $Q\sin(4t+30)$
- Q33. A three phase diode bridge rectifier is fed from a 400V RMS 50Hz three phase AC source. If the load is purely resistive, then peak instantaneous output voltage is equal to
 - a) 400V
 - **b)** 400√2V
 - c) $400\sqrt{2/3}$
 - d) $400\sqrt{3}$
- Q34.A step down chopper is operated in the continuous conduction mode in steady state with a constant duty ratio D. If V0 is the magnitude of dc output voltage and if Vs is the magnitude of dc input voltage, the ratio of V0/Vs is given as:
 - a) D
 - b) 1-D
 - c) 1/(1-D0
 - d) D/(1-D)
- Q35. A three phase 440V 50Hz AC mains fed thyristor bridge is feeding a 440V Dc, 15kW 1500rpm separately excited dc motor with a ripple free continuous current in dc link under all operating conditions, neglecting losses, the power factor of the ac mains at half the rated speed is
 - a) 0.354
 - b) 0.372
 - c) 0.90
 - d) 0.955
- Q36. A 3 phase voltage source inverter is operated in 180° conduction mode. Which one of the following statements is true?
 - a) Both pole-voltage and line voltage will have 3rd harmonic components
 - b) Pole voltage will have 3rd harmonic component but line voltage will be free from 3rd harmonic
 - c) Line voltage will have 3rd harmonic component but pole voltage will be free from 3rd harmonic
 - d) Both pole- voltage and line voltage will be free from 3rd harmonic components
- Q37. The output Y of a 2 bit comparator is logic 1 whenever 2 bit input A is greater than 2 bit input B. The number of combinations for which the output is logic 1 is
 - a) 4
- **b)** 6
- c) 8

d) 10

- Q38. A bulb in a stair case has two switches one switch being at ground floor and other one at first floor. The bulb can be turned ON and also can be turned OFF by any one of the switches irrespective of the state of the other switch. The logic of switching of bulb resembles
 - a) AND gate
 - b) OR gate
 - c) XOR gate
 - d) NAND gate
- Q39. A low pass filter with a cut off frequency as 30Hz is cascaded with a high pass filter with a cut off frequency of 20Hz. The resultant system of filters function as
 - a) all pass filter
 - b) all stop filter
 - c) band stop filter
 - d) band pass filter
- Q40. In a common emitter amplifier the un bypassed emitter resistance provides
 - a) Voltage shunt feedback
 - b) Current series feedback
 - c) Negative voltage feedback
 - d) Positive current feedback